This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A possibly more useful version of ax-cc using sequences F ( n ) instead of countable sets. The Axiom of Infinity is needed to prove this, and indeed this implies the Axiom of Infinity. (Contributed by Mario Carneiro, 8-Feb-2013) (Revised by Mario Carneiro, 26-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | axcc3.1 | ⊢ 𝐹 ∈ V | |
| axcc3.2 | ⊢ 𝑁 ≈ ω | ||
| Assertion | axcc3 | ⊢ ∃ 𝑓 ( 𝑓 Fn 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝐹 ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axcc3.1 | ⊢ 𝐹 ∈ V | |
| 2 | axcc3.2 | ⊢ 𝑁 ≈ ω | |
| 3 | relen | ⊢ Rel ≈ | |
| 4 | 3 | brrelex1i | ⊢ ( 𝑁 ≈ ω → 𝑁 ∈ V ) |
| 5 | mptexg | ⊢ ( 𝑁 ∈ V → ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∈ V ) | |
| 6 | 2 4 5 | mp2b | ⊢ ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∈ V |
| 7 | bren | ⊢ ( 𝑁 ≈ ω ↔ ∃ ℎ ℎ : 𝑁 –1-1-onto→ ω ) | |
| 8 | 2 7 | mpbi | ⊢ ∃ ℎ ℎ : 𝑁 –1-1-onto→ ω |
| 9 | axcc2 | ⊢ ∃ 𝑔 ( 𝑔 Fn ω ∧ ∀ 𝑚 ∈ ω ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ → ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ) ) | |
| 10 | f1of | ⊢ ( ℎ : 𝑁 –1-1-onto→ ω → ℎ : 𝑁 ⟶ ω ) | |
| 11 | fnfco | ⊢ ( ( 𝑔 Fn ω ∧ ℎ : 𝑁 ⟶ ω ) → ( 𝑔 ∘ ℎ ) Fn 𝑁 ) | |
| 12 | 10 11 | sylan2 | ⊢ ( ( 𝑔 Fn ω ∧ ℎ : 𝑁 –1-1-onto→ ω ) → ( 𝑔 ∘ ℎ ) Fn 𝑁 ) |
| 13 | 12 | adantlr | ⊢ ( ( ( 𝑔 Fn ω ∧ ∀ 𝑚 ∈ ω ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ → ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ) ) ∧ ℎ : 𝑁 –1-1-onto→ ω ) → ( 𝑔 ∘ ℎ ) Fn 𝑁 ) |
| 14 | 13 | 3adant1 | ⊢ ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ ( 𝑔 Fn ω ∧ ∀ 𝑚 ∈ ω ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ → ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ) ) ∧ ℎ : 𝑁 –1-1-onto→ ω ) → ( 𝑔 ∘ ℎ ) Fn 𝑁 ) |
| 15 | nfmpt1 | ⊢ Ⅎ 𝑛 ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) | |
| 16 | 15 | nfeq2 | ⊢ Ⅎ 𝑛 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) |
| 17 | nfv | ⊢ Ⅎ 𝑛 ( 𝑔 Fn ω ∧ ∀ 𝑚 ∈ ω ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ → ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ) ) | |
| 18 | nfv | ⊢ Ⅎ 𝑛 ℎ : 𝑁 –1-1-onto→ ω | |
| 19 | 16 17 18 | nf3an | ⊢ Ⅎ 𝑛 ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ ( 𝑔 Fn ω ∧ ∀ 𝑚 ∈ ω ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ → ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ) ) ∧ ℎ : 𝑁 –1-1-onto→ ω ) |
| 20 | 10 | ffvelcdmda | ⊢ ( ( ℎ : 𝑁 –1-1-onto→ ω ∧ 𝑛 ∈ 𝑁 ) → ( ℎ ‘ 𝑛 ) ∈ ω ) |
| 21 | fveq2 | ⊢ ( 𝑚 = ( ℎ ‘ 𝑛 ) → ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) = ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) ) | |
| 22 | 21 | neeq1d | ⊢ ( 𝑚 = ( ℎ ‘ 𝑛 ) → ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ ↔ ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) ≠ ∅ ) ) |
| 23 | fveq2 | ⊢ ( 𝑚 = ( ℎ ‘ 𝑛 ) → ( 𝑔 ‘ 𝑚 ) = ( 𝑔 ‘ ( ℎ ‘ 𝑛 ) ) ) | |
| 24 | 23 21 | eleq12d | ⊢ ( 𝑚 = ( ℎ ‘ 𝑛 ) → ( ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ↔ ( 𝑔 ‘ ( ℎ ‘ 𝑛 ) ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) ) ) |
| 25 | 22 24 | imbi12d | ⊢ ( 𝑚 = ( ℎ ‘ 𝑛 ) → ( ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ → ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ) ↔ ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) ≠ ∅ → ( 𝑔 ‘ ( ℎ ‘ 𝑛 ) ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) ) ) ) |
| 26 | 25 | rspcv | ⊢ ( ( ℎ ‘ 𝑛 ) ∈ ω → ( ∀ 𝑚 ∈ ω ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ → ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ) → ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) ≠ ∅ → ( 𝑔 ‘ ( ℎ ‘ 𝑛 ) ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) ) ) ) |
| 27 | 20 26 | syl | ⊢ ( ( ℎ : 𝑁 –1-1-onto→ ω ∧ 𝑛 ∈ 𝑁 ) → ( ∀ 𝑚 ∈ ω ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ → ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ) → ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) ≠ ∅ → ( 𝑔 ‘ ( ℎ ‘ 𝑛 ) ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) ) ) ) |
| 28 | 27 | 3ad2antl3 | ⊢ ( ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ 𝑔 Fn ω ∧ ℎ : 𝑁 –1-1-onto→ ω ) ∧ 𝑛 ∈ 𝑁 ) → ( ∀ 𝑚 ∈ ω ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ → ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ) → ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) ≠ ∅ → ( 𝑔 ‘ ( ℎ ‘ 𝑛 ) ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) ) ) ) |
| 29 | f1ocnv | ⊢ ( ℎ : 𝑁 –1-1-onto→ ω → ◡ ℎ : ω –1-1-onto→ 𝑁 ) | |
| 30 | f1of | ⊢ ( ◡ ℎ : ω –1-1-onto→ 𝑁 → ◡ ℎ : ω ⟶ 𝑁 ) | |
| 31 | 29 30 | syl | ⊢ ( ℎ : 𝑁 –1-1-onto→ ω → ◡ ℎ : ω ⟶ 𝑁 ) |
| 32 | fvco3 | ⊢ ( ( ◡ ℎ : ω ⟶ 𝑁 ∧ ( ℎ ‘ 𝑛 ) ∈ ω ) → ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) = ( 𝑘 ‘ ( ◡ ℎ ‘ ( ℎ ‘ 𝑛 ) ) ) ) | |
| 33 | 31 20 32 | syl2an2r | ⊢ ( ( ℎ : 𝑁 –1-1-onto→ ω ∧ 𝑛 ∈ 𝑁 ) → ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) = ( 𝑘 ‘ ( ◡ ℎ ‘ ( ℎ ‘ 𝑛 ) ) ) ) |
| 34 | 33 | 3adant1 | ⊢ ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ ℎ : 𝑁 –1-1-onto→ ω ∧ 𝑛 ∈ 𝑁 ) → ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) = ( 𝑘 ‘ ( ◡ ℎ ‘ ( ℎ ‘ 𝑛 ) ) ) ) |
| 35 | f1ocnvfv1 | ⊢ ( ( ℎ : 𝑁 –1-1-onto→ ω ∧ 𝑛 ∈ 𝑁 ) → ( ◡ ℎ ‘ ( ℎ ‘ 𝑛 ) ) = 𝑛 ) | |
| 36 | 35 | fveq2d | ⊢ ( ( ℎ : 𝑁 –1-1-onto→ ω ∧ 𝑛 ∈ 𝑁 ) → ( 𝑘 ‘ ( ◡ ℎ ‘ ( ℎ ‘ 𝑛 ) ) ) = ( 𝑘 ‘ 𝑛 ) ) |
| 37 | 36 | 3adant1 | ⊢ ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ ℎ : 𝑁 –1-1-onto→ ω ∧ 𝑛 ∈ 𝑁 ) → ( 𝑘 ‘ ( ◡ ℎ ‘ ( ℎ ‘ 𝑛 ) ) ) = ( 𝑘 ‘ 𝑛 ) ) |
| 38 | fveq1 | ⊢ ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) → ( 𝑘 ‘ 𝑛 ) = ( ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ‘ 𝑛 ) ) | |
| 39 | eqid | ⊢ ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) | |
| 40 | 39 | fvmpt2 | ⊢ ( ( 𝑛 ∈ 𝑁 ∧ 𝐹 ∈ V ) → ( ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ‘ 𝑛 ) = 𝐹 ) |
| 41 | 1 40 | mpan2 | ⊢ ( 𝑛 ∈ 𝑁 → ( ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ‘ 𝑛 ) = 𝐹 ) |
| 42 | 38 41 | sylan9eq | ⊢ ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ 𝑛 ∈ 𝑁 ) → ( 𝑘 ‘ 𝑛 ) = 𝐹 ) |
| 43 | 42 | 3adant2 | ⊢ ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ ℎ : 𝑁 –1-1-onto→ ω ∧ 𝑛 ∈ 𝑁 ) → ( 𝑘 ‘ 𝑛 ) = 𝐹 ) |
| 44 | 34 37 43 | 3eqtrd | ⊢ ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ ℎ : 𝑁 –1-1-onto→ ω ∧ 𝑛 ∈ 𝑁 ) → ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) = 𝐹 ) |
| 45 | 44 | 3expa | ⊢ ( ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ ℎ : 𝑁 –1-1-onto→ ω ) ∧ 𝑛 ∈ 𝑁 ) → ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) = 𝐹 ) |
| 46 | 45 | 3adantl2 | ⊢ ( ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ 𝑔 Fn ω ∧ ℎ : 𝑁 –1-1-onto→ ω ) ∧ 𝑛 ∈ 𝑁 ) → ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) = 𝐹 ) |
| 47 | 46 | neeq1d | ⊢ ( ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ 𝑔 Fn ω ∧ ℎ : 𝑁 –1-1-onto→ ω ) ∧ 𝑛 ∈ 𝑁 ) → ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) ≠ ∅ ↔ 𝐹 ≠ ∅ ) ) |
| 48 | 10 | 3ad2ant3 | ⊢ ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ 𝑔 Fn ω ∧ ℎ : 𝑁 –1-1-onto→ ω ) → ℎ : 𝑁 ⟶ ω ) |
| 49 | fvco3 | ⊢ ( ( ℎ : 𝑁 ⟶ ω ∧ 𝑛 ∈ 𝑁 ) → ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) = ( 𝑔 ‘ ( ℎ ‘ 𝑛 ) ) ) | |
| 50 | 48 49 | sylan | ⊢ ( ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ 𝑔 Fn ω ∧ ℎ : 𝑁 –1-1-onto→ ω ) ∧ 𝑛 ∈ 𝑁 ) → ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) = ( 𝑔 ‘ ( ℎ ‘ 𝑛 ) ) ) |
| 51 | 50 | eleq1d | ⊢ ( ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ 𝑔 Fn ω ∧ ℎ : 𝑁 –1-1-onto→ ω ) ∧ 𝑛 ∈ 𝑁 ) → ( ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) ↔ ( 𝑔 ‘ ( ℎ ‘ 𝑛 ) ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) ) ) |
| 52 | 46 | eleq2d | ⊢ ( ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ 𝑔 Fn ω ∧ ℎ : 𝑁 –1-1-onto→ ω ) ∧ 𝑛 ∈ 𝑁 ) → ( ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) ↔ ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) ∈ 𝐹 ) ) |
| 53 | 51 52 | bitr3d | ⊢ ( ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ 𝑔 Fn ω ∧ ℎ : 𝑁 –1-1-onto→ ω ) ∧ 𝑛 ∈ 𝑁 ) → ( ( 𝑔 ‘ ( ℎ ‘ 𝑛 ) ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) ↔ ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) ∈ 𝐹 ) ) |
| 54 | 47 53 | imbi12d | ⊢ ( ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ 𝑔 Fn ω ∧ ℎ : 𝑁 –1-1-onto→ ω ) ∧ 𝑛 ∈ 𝑁 ) → ( ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) ≠ ∅ → ( 𝑔 ‘ ( ℎ ‘ 𝑛 ) ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ ( ℎ ‘ 𝑛 ) ) ) ↔ ( 𝐹 ≠ ∅ → ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) ∈ 𝐹 ) ) ) |
| 55 | 28 54 | sylibd | ⊢ ( ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ 𝑔 Fn ω ∧ ℎ : 𝑁 –1-1-onto→ ω ) ∧ 𝑛 ∈ 𝑁 ) → ( ∀ 𝑚 ∈ ω ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ → ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ) → ( 𝐹 ≠ ∅ → ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) ∈ 𝐹 ) ) ) |
| 56 | 55 | ex | ⊢ ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ 𝑔 Fn ω ∧ ℎ : 𝑁 –1-1-onto→ ω ) → ( 𝑛 ∈ 𝑁 → ( ∀ 𝑚 ∈ ω ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ → ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ) → ( 𝐹 ≠ ∅ → ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) ∈ 𝐹 ) ) ) ) |
| 57 | 56 | com23 | ⊢ ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ 𝑔 Fn ω ∧ ℎ : 𝑁 –1-1-onto→ ω ) → ( ∀ 𝑚 ∈ ω ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ → ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ) → ( 𝑛 ∈ 𝑁 → ( 𝐹 ≠ ∅ → ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) ∈ 𝐹 ) ) ) ) |
| 58 | 57 | 3exp | ⊢ ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) → ( 𝑔 Fn ω → ( ℎ : 𝑁 –1-1-onto→ ω → ( ∀ 𝑚 ∈ ω ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ → ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ) → ( 𝑛 ∈ 𝑁 → ( 𝐹 ≠ ∅ → ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) ∈ 𝐹 ) ) ) ) ) ) |
| 59 | 58 | com34 | ⊢ ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) → ( 𝑔 Fn ω → ( ∀ 𝑚 ∈ ω ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ → ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ) → ( ℎ : 𝑁 –1-1-onto→ ω → ( 𝑛 ∈ 𝑁 → ( 𝐹 ≠ ∅ → ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) ∈ 𝐹 ) ) ) ) ) ) |
| 60 | 59 | imp32 | ⊢ ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ ( 𝑔 Fn ω ∧ ∀ 𝑚 ∈ ω ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ → ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ) ) ) → ( ℎ : 𝑁 –1-1-onto→ ω → ( 𝑛 ∈ 𝑁 → ( 𝐹 ≠ ∅ → ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) ∈ 𝐹 ) ) ) ) |
| 61 | 60 | 3impia | ⊢ ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ ( 𝑔 Fn ω ∧ ∀ 𝑚 ∈ ω ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ → ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ) ) ∧ ℎ : 𝑁 –1-1-onto→ ω ) → ( 𝑛 ∈ 𝑁 → ( 𝐹 ≠ ∅ → ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) ∈ 𝐹 ) ) ) |
| 62 | 19 61 | ralrimi | ⊢ ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ ( 𝑔 Fn ω ∧ ∀ 𝑚 ∈ ω ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ → ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ) ) ∧ ℎ : 𝑁 –1-1-onto→ ω ) → ∀ 𝑛 ∈ 𝑁 ( 𝐹 ≠ ∅ → ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) ∈ 𝐹 ) ) |
| 63 | vex | ⊢ 𝑔 ∈ V | |
| 64 | vex | ⊢ ℎ ∈ V | |
| 65 | 63 64 | coex | ⊢ ( 𝑔 ∘ ℎ ) ∈ V |
| 66 | fneq1 | ⊢ ( 𝑓 = ( 𝑔 ∘ ℎ ) → ( 𝑓 Fn 𝑁 ↔ ( 𝑔 ∘ ℎ ) Fn 𝑁 ) ) | |
| 67 | fveq1 | ⊢ ( 𝑓 = ( 𝑔 ∘ ℎ ) → ( 𝑓 ‘ 𝑛 ) = ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) ) | |
| 68 | 67 | eleq1d | ⊢ ( 𝑓 = ( 𝑔 ∘ ℎ ) → ( ( 𝑓 ‘ 𝑛 ) ∈ 𝐹 ↔ ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) ∈ 𝐹 ) ) |
| 69 | 68 | imbi2d | ⊢ ( 𝑓 = ( 𝑔 ∘ ℎ ) → ( ( 𝐹 ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ 𝐹 ) ↔ ( 𝐹 ≠ ∅ → ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) ∈ 𝐹 ) ) ) |
| 70 | 69 | ralbidv | ⊢ ( 𝑓 = ( 𝑔 ∘ ℎ ) → ( ∀ 𝑛 ∈ 𝑁 ( 𝐹 ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ 𝐹 ) ↔ ∀ 𝑛 ∈ 𝑁 ( 𝐹 ≠ ∅ → ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) ∈ 𝐹 ) ) ) |
| 71 | 66 70 | anbi12d | ⊢ ( 𝑓 = ( 𝑔 ∘ ℎ ) → ( ( 𝑓 Fn 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝐹 ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ 𝐹 ) ) ↔ ( ( 𝑔 ∘ ℎ ) Fn 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝐹 ≠ ∅ → ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) ∈ 𝐹 ) ) ) ) |
| 72 | 65 71 | spcev | ⊢ ( ( ( 𝑔 ∘ ℎ ) Fn 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝐹 ≠ ∅ → ( ( 𝑔 ∘ ℎ ) ‘ 𝑛 ) ∈ 𝐹 ) ) → ∃ 𝑓 ( 𝑓 Fn 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝐹 ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ 𝐹 ) ) ) |
| 73 | 14 62 72 | syl2anc | ⊢ ( ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) ∧ ( 𝑔 Fn ω ∧ ∀ 𝑚 ∈ ω ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ → ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ) ) ∧ ℎ : 𝑁 –1-1-onto→ ω ) → ∃ 𝑓 ( 𝑓 Fn 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝐹 ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ 𝐹 ) ) ) |
| 74 | 73 | 3exp | ⊢ ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) → ( ( 𝑔 Fn ω ∧ ∀ 𝑚 ∈ ω ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ → ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ) ) → ( ℎ : 𝑁 –1-1-onto→ ω → ∃ 𝑓 ( 𝑓 Fn 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝐹 ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ 𝐹 ) ) ) ) ) |
| 75 | 74 | exlimdv | ⊢ ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) → ( ∃ 𝑔 ( 𝑔 Fn ω ∧ ∀ 𝑚 ∈ ω ( ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ≠ ∅ → ( 𝑔 ‘ 𝑚 ) ∈ ( ( 𝑘 ∘ ◡ ℎ ) ‘ 𝑚 ) ) ) → ( ℎ : 𝑁 –1-1-onto→ ω → ∃ 𝑓 ( 𝑓 Fn 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝐹 ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ 𝐹 ) ) ) ) ) |
| 76 | 9 75 | mpi | ⊢ ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) → ( ℎ : 𝑁 –1-1-onto→ ω → ∃ 𝑓 ( 𝑓 Fn 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝐹 ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ 𝐹 ) ) ) ) |
| 77 | 76 | exlimdv | ⊢ ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) → ( ∃ ℎ ℎ : 𝑁 –1-1-onto→ ω → ∃ 𝑓 ( 𝑓 Fn 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝐹 ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ 𝐹 ) ) ) ) |
| 78 | 8 77 | mpi | ⊢ ( 𝑘 = ( 𝑛 ∈ 𝑁 ↦ 𝐹 ) → ∃ 𝑓 ( 𝑓 Fn 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝐹 ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ 𝐹 ) ) ) |
| 79 | 6 78 | vtocle | ⊢ ∃ 𝑓 ( 𝑓 Fn 𝑁 ∧ ∀ 𝑛 ∈ 𝑁 ( 𝐹 ≠ ∅ → ( 𝑓 ‘ 𝑛 ) ∈ 𝐹 ) ) |