This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A possibly more useful version of ax-cc using sequences F ( n ) instead of countable sets. The Axiom of Infinity is needed to prove this, and indeed this implies the Axiom of Infinity. (Contributed by Mario Carneiro, 8-Feb-2013) (Revised by Mario Carneiro, 26-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | axcc3.1 | |- F e. _V |
|
| axcc3.2 | |- N ~~ _om |
||
| Assertion | axcc3 | |- E. f ( f Fn N /\ A. n e. N ( F =/= (/) -> ( f ` n ) e. F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axcc3.1 | |- F e. _V |
|
| 2 | axcc3.2 | |- N ~~ _om |
|
| 3 | relen | |- Rel ~~ |
|
| 4 | 3 | brrelex1i | |- ( N ~~ _om -> N e. _V ) |
| 5 | mptexg | |- ( N e. _V -> ( n e. N |-> F ) e. _V ) |
|
| 6 | 2 4 5 | mp2b | |- ( n e. N |-> F ) e. _V |
| 7 | bren | |- ( N ~~ _om <-> E. h h : N -1-1-onto-> _om ) |
|
| 8 | 2 7 | mpbi | |- E. h h : N -1-1-onto-> _om |
| 9 | axcc2 | |- E. g ( g Fn _om /\ A. m e. _om ( ( ( k o. `' h ) ` m ) =/= (/) -> ( g ` m ) e. ( ( k o. `' h ) ` m ) ) ) |
|
| 10 | f1of | |- ( h : N -1-1-onto-> _om -> h : N --> _om ) |
|
| 11 | fnfco | |- ( ( g Fn _om /\ h : N --> _om ) -> ( g o. h ) Fn N ) |
|
| 12 | 10 11 | sylan2 | |- ( ( g Fn _om /\ h : N -1-1-onto-> _om ) -> ( g o. h ) Fn N ) |
| 13 | 12 | adantlr | |- ( ( ( g Fn _om /\ A. m e. _om ( ( ( k o. `' h ) ` m ) =/= (/) -> ( g ` m ) e. ( ( k o. `' h ) ` m ) ) ) /\ h : N -1-1-onto-> _om ) -> ( g o. h ) Fn N ) |
| 14 | 13 | 3adant1 | |- ( ( k = ( n e. N |-> F ) /\ ( g Fn _om /\ A. m e. _om ( ( ( k o. `' h ) ` m ) =/= (/) -> ( g ` m ) e. ( ( k o. `' h ) ` m ) ) ) /\ h : N -1-1-onto-> _om ) -> ( g o. h ) Fn N ) |
| 15 | nfmpt1 | |- F/_ n ( n e. N |-> F ) |
|
| 16 | 15 | nfeq2 | |- F/ n k = ( n e. N |-> F ) |
| 17 | nfv | |- F/ n ( g Fn _om /\ A. m e. _om ( ( ( k o. `' h ) ` m ) =/= (/) -> ( g ` m ) e. ( ( k o. `' h ) ` m ) ) ) |
|
| 18 | nfv | |- F/ n h : N -1-1-onto-> _om |
|
| 19 | 16 17 18 | nf3an | |- F/ n ( k = ( n e. N |-> F ) /\ ( g Fn _om /\ A. m e. _om ( ( ( k o. `' h ) ` m ) =/= (/) -> ( g ` m ) e. ( ( k o. `' h ) ` m ) ) ) /\ h : N -1-1-onto-> _om ) |
| 20 | 10 | ffvelcdmda | |- ( ( h : N -1-1-onto-> _om /\ n e. N ) -> ( h ` n ) e. _om ) |
| 21 | fveq2 | |- ( m = ( h ` n ) -> ( ( k o. `' h ) ` m ) = ( ( k o. `' h ) ` ( h ` n ) ) ) |
|
| 22 | 21 | neeq1d | |- ( m = ( h ` n ) -> ( ( ( k o. `' h ) ` m ) =/= (/) <-> ( ( k o. `' h ) ` ( h ` n ) ) =/= (/) ) ) |
| 23 | fveq2 | |- ( m = ( h ` n ) -> ( g ` m ) = ( g ` ( h ` n ) ) ) |
|
| 24 | 23 21 | eleq12d | |- ( m = ( h ` n ) -> ( ( g ` m ) e. ( ( k o. `' h ) ` m ) <-> ( g ` ( h ` n ) ) e. ( ( k o. `' h ) ` ( h ` n ) ) ) ) |
| 25 | 22 24 | imbi12d | |- ( m = ( h ` n ) -> ( ( ( ( k o. `' h ) ` m ) =/= (/) -> ( g ` m ) e. ( ( k o. `' h ) ` m ) ) <-> ( ( ( k o. `' h ) ` ( h ` n ) ) =/= (/) -> ( g ` ( h ` n ) ) e. ( ( k o. `' h ) ` ( h ` n ) ) ) ) ) |
| 26 | 25 | rspcv | |- ( ( h ` n ) e. _om -> ( A. m e. _om ( ( ( k o. `' h ) ` m ) =/= (/) -> ( g ` m ) e. ( ( k o. `' h ) ` m ) ) -> ( ( ( k o. `' h ) ` ( h ` n ) ) =/= (/) -> ( g ` ( h ` n ) ) e. ( ( k o. `' h ) ` ( h ` n ) ) ) ) ) |
| 27 | 20 26 | syl | |- ( ( h : N -1-1-onto-> _om /\ n e. N ) -> ( A. m e. _om ( ( ( k o. `' h ) ` m ) =/= (/) -> ( g ` m ) e. ( ( k o. `' h ) ` m ) ) -> ( ( ( k o. `' h ) ` ( h ` n ) ) =/= (/) -> ( g ` ( h ` n ) ) e. ( ( k o. `' h ) ` ( h ` n ) ) ) ) ) |
| 28 | 27 | 3ad2antl3 | |- ( ( ( k = ( n e. N |-> F ) /\ g Fn _om /\ h : N -1-1-onto-> _om ) /\ n e. N ) -> ( A. m e. _om ( ( ( k o. `' h ) ` m ) =/= (/) -> ( g ` m ) e. ( ( k o. `' h ) ` m ) ) -> ( ( ( k o. `' h ) ` ( h ` n ) ) =/= (/) -> ( g ` ( h ` n ) ) e. ( ( k o. `' h ) ` ( h ` n ) ) ) ) ) |
| 29 | f1ocnv | |- ( h : N -1-1-onto-> _om -> `' h : _om -1-1-onto-> N ) |
|
| 30 | f1of | |- ( `' h : _om -1-1-onto-> N -> `' h : _om --> N ) |
|
| 31 | 29 30 | syl | |- ( h : N -1-1-onto-> _om -> `' h : _om --> N ) |
| 32 | fvco3 | |- ( ( `' h : _om --> N /\ ( h ` n ) e. _om ) -> ( ( k o. `' h ) ` ( h ` n ) ) = ( k ` ( `' h ` ( h ` n ) ) ) ) |
|
| 33 | 31 20 32 | syl2an2r | |- ( ( h : N -1-1-onto-> _om /\ n e. N ) -> ( ( k o. `' h ) ` ( h ` n ) ) = ( k ` ( `' h ` ( h ` n ) ) ) ) |
| 34 | 33 | 3adant1 | |- ( ( k = ( n e. N |-> F ) /\ h : N -1-1-onto-> _om /\ n e. N ) -> ( ( k o. `' h ) ` ( h ` n ) ) = ( k ` ( `' h ` ( h ` n ) ) ) ) |
| 35 | f1ocnvfv1 | |- ( ( h : N -1-1-onto-> _om /\ n e. N ) -> ( `' h ` ( h ` n ) ) = n ) |
|
| 36 | 35 | fveq2d | |- ( ( h : N -1-1-onto-> _om /\ n e. N ) -> ( k ` ( `' h ` ( h ` n ) ) ) = ( k ` n ) ) |
| 37 | 36 | 3adant1 | |- ( ( k = ( n e. N |-> F ) /\ h : N -1-1-onto-> _om /\ n e. N ) -> ( k ` ( `' h ` ( h ` n ) ) ) = ( k ` n ) ) |
| 38 | fveq1 | |- ( k = ( n e. N |-> F ) -> ( k ` n ) = ( ( n e. N |-> F ) ` n ) ) |
|
| 39 | eqid | |- ( n e. N |-> F ) = ( n e. N |-> F ) |
|
| 40 | 39 | fvmpt2 | |- ( ( n e. N /\ F e. _V ) -> ( ( n e. N |-> F ) ` n ) = F ) |
| 41 | 1 40 | mpan2 | |- ( n e. N -> ( ( n e. N |-> F ) ` n ) = F ) |
| 42 | 38 41 | sylan9eq | |- ( ( k = ( n e. N |-> F ) /\ n e. N ) -> ( k ` n ) = F ) |
| 43 | 42 | 3adant2 | |- ( ( k = ( n e. N |-> F ) /\ h : N -1-1-onto-> _om /\ n e. N ) -> ( k ` n ) = F ) |
| 44 | 34 37 43 | 3eqtrd | |- ( ( k = ( n e. N |-> F ) /\ h : N -1-1-onto-> _om /\ n e. N ) -> ( ( k o. `' h ) ` ( h ` n ) ) = F ) |
| 45 | 44 | 3expa | |- ( ( ( k = ( n e. N |-> F ) /\ h : N -1-1-onto-> _om ) /\ n e. N ) -> ( ( k o. `' h ) ` ( h ` n ) ) = F ) |
| 46 | 45 | 3adantl2 | |- ( ( ( k = ( n e. N |-> F ) /\ g Fn _om /\ h : N -1-1-onto-> _om ) /\ n e. N ) -> ( ( k o. `' h ) ` ( h ` n ) ) = F ) |
| 47 | 46 | neeq1d | |- ( ( ( k = ( n e. N |-> F ) /\ g Fn _om /\ h : N -1-1-onto-> _om ) /\ n e. N ) -> ( ( ( k o. `' h ) ` ( h ` n ) ) =/= (/) <-> F =/= (/) ) ) |
| 48 | 10 | 3ad2ant3 | |- ( ( k = ( n e. N |-> F ) /\ g Fn _om /\ h : N -1-1-onto-> _om ) -> h : N --> _om ) |
| 49 | fvco3 | |- ( ( h : N --> _om /\ n e. N ) -> ( ( g o. h ) ` n ) = ( g ` ( h ` n ) ) ) |
|
| 50 | 48 49 | sylan | |- ( ( ( k = ( n e. N |-> F ) /\ g Fn _om /\ h : N -1-1-onto-> _om ) /\ n e. N ) -> ( ( g o. h ) ` n ) = ( g ` ( h ` n ) ) ) |
| 51 | 50 | eleq1d | |- ( ( ( k = ( n e. N |-> F ) /\ g Fn _om /\ h : N -1-1-onto-> _om ) /\ n e. N ) -> ( ( ( g o. h ) ` n ) e. ( ( k o. `' h ) ` ( h ` n ) ) <-> ( g ` ( h ` n ) ) e. ( ( k o. `' h ) ` ( h ` n ) ) ) ) |
| 52 | 46 | eleq2d | |- ( ( ( k = ( n e. N |-> F ) /\ g Fn _om /\ h : N -1-1-onto-> _om ) /\ n e. N ) -> ( ( ( g o. h ) ` n ) e. ( ( k o. `' h ) ` ( h ` n ) ) <-> ( ( g o. h ) ` n ) e. F ) ) |
| 53 | 51 52 | bitr3d | |- ( ( ( k = ( n e. N |-> F ) /\ g Fn _om /\ h : N -1-1-onto-> _om ) /\ n e. N ) -> ( ( g ` ( h ` n ) ) e. ( ( k o. `' h ) ` ( h ` n ) ) <-> ( ( g o. h ) ` n ) e. F ) ) |
| 54 | 47 53 | imbi12d | |- ( ( ( k = ( n e. N |-> F ) /\ g Fn _om /\ h : N -1-1-onto-> _om ) /\ n e. N ) -> ( ( ( ( k o. `' h ) ` ( h ` n ) ) =/= (/) -> ( g ` ( h ` n ) ) e. ( ( k o. `' h ) ` ( h ` n ) ) ) <-> ( F =/= (/) -> ( ( g o. h ) ` n ) e. F ) ) ) |
| 55 | 28 54 | sylibd | |- ( ( ( k = ( n e. N |-> F ) /\ g Fn _om /\ h : N -1-1-onto-> _om ) /\ n e. N ) -> ( A. m e. _om ( ( ( k o. `' h ) ` m ) =/= (/) -> ( g ` m ) e. ( ( k o. `' h ) ` m ) ) -> ( F =/= (/) -> ( ( g o. h ) ` n ) e. F ) ) ) |
| 56 | 55 | ex | |- ( ( k = ( n e. N |-> F ) /\ g Fn _om /\ h : N -1-1-onto-> _om ) -> ( n e. N -> ( A. m e. _om ( ( ( k o. `' h ) ` m ) =/= (/) -> ( g ` m ) e. ( ( k o. `' h ) ` m ) ) -> ( F =/= (/) -> ( ( g o. h ) ` n ) e. F ) ) ) ) |
| 57 | 56 | com23 | |- ( ( k = ( n e. N |-> F ) /\ g Fn _om /\ h : N -1-1-onto-> _om ) -> ( A. m e. _om ( ( ( k o. `' h ) ` m ) =/= (/) -> ( g ` m ) e. ( ( k o. `' h ) ` m ) ) -> ( n e. N -> ( F =/= (/) -> ( ( g o. h ) ` n ) e. F ) ) ) ) |
| 58 | 57 | 3exp | |- ( k = ( n e. N |-> F ) -> ( g Fn _om -> ( h : N -1-1-onto-> _om -> ( A. m e. _om ( ( ( k o. `' h ) ` m ) =/= (/) -> ( g ` m ) e. ( ( k o. `' h ) ` m ) ) -> ( n e. N -> ( F =/= (/) -> ( ( g o. h ) ` n ) e. F ) ) ) ) ) ) |
| 59 | 58 | com34 | |- ( k = ( n e. N |-> F ) -> ( g Fn _om -> ( A. m e. _om ( ( ( k o. `' h ) ` m ) =/= (/) -> ( g ` m ) e. ( ( k o. `' h ) ` m ) ) -> ( h : N -1-1-onto-> _om -> ( n e. N -> ( F =/= (/) -> ( ( g o. h ) ` n ) e. F ) ) ) ) ) ) |
| 60 | 59 | imp32 | |- ( ( k = ( n e. N |-> F ) /\ ( g Fn _om /\ A. m e. _om ( ( ( k o. `' h ) ` m ) =/= (/) -> ( g ` m ) e. ( ( k o. `' h ) ` m ) ) ) ) -> ( h : N -1-1-onto-> _om -> ( n e. N -> ( F =/= (/) -> ( ( g o. h ) ` n ) e. F ) ) ) ) |
| 61 | 60 | 3impia | |- ( ( k = ( n e. N |-> F ) /\ ( g Fn _om /\ A. m e. _om ( ( ( k o. `' h ) ` m ) =/= (/) -> ( g ` m ) e. ( ( k o. `' h ) ` m ) ) ) /\ h : N -1-1-onto-> _om ) -> ( n e. N -> ( F =/= (/) -> ( ( g o. h ) ` n ) e. F ) ) ) |
| 62 | 19 61 | ralrimi | |- ( ( k = ( n e. N |-> F ) /\ ( g Fn _om /\ A. m e. _om ( ( ( k o. `' h ) ` m ) =/= (/) -> ( g ` m ) e. ( ( k o. `' h ) ` m ) ) ) /\ h : N -1-1-onto-> _om ) -> A. n e. N ( F =/= (/) -> ( ( g o. h ) ` n ) e. F ) ) |
| 63 | vex | |- g e. _V |
|
| 64 | vex | |- h e. _V |
|
| 65 | 63 64 | coex | |- ( g o. h ) e. _V |
| 66 | fneq1 | |- ( f = ( g o. h ) -> ( f Fn N <-> ( g o. h ) Fn N ) ) |
|
| 67 | fveq1 | |- ( f = ( g o. h ) -> ( f ` n ) = ( ( g o. h ) ` n ) ) |
|
| 68 | 67 | eleq1d | |- ( f = ( g o. h ) -> ( ( f ` n ) e. F <-> ( ( g o. h ) ` n ) e. F ) ) |
| 69 | 68 | imbi2d | |- ( f = ( g o. h ) -> ( ( F =/= (/) -> ( f ` n ) e. F ) <-> ( F =/= (/) -> ( ( g o. h ) ` n ) e. F ) ) ) |
| 70 | 69 | ralbidv | |- ( f = ( g o. h ) -> ( A. n e. N ( F =/= (/) -> ( f ` n ) e. F ) <-> A. n e. N ( F =/= (/) -> ( ( g o. h ) ` n ) e. F ) ) ) |
| 71 | 66 70 | anbi12d | |- ( f = ( g o. h ) -> ( ( f Fn N /\ A. n e. N ( F =/= (/) -> ( f ` n ) e. F ) ) <-> ( ( g o. h ) Fn N /\ A. n e. N ( F =/= (/) -> ( ( g o. h ) ` n ) e. F ) ) ) ) |
| 72 | 65 71 | spcev | |- ( ( ( g o. h ) Fn N /\ A. n e. N ( F =/= (/) -> ( ( g o. h ) ` n ) e. F ) ) -> E. f ( f Fn N /\ A. n e. N ( F =/= (/) -> ( f ` n ) e. F ) ) ) |
| 73 | 14 62 72 | syl2anc | |- ( ( k = ( n e. N |-> F ) /\ ( g Fn _om /\ A. m e. _om ( ( ( k o. `' h ) ` m ) =/= (/) -> ( g ` m ) e. ( ( k o. `' h ) ` m ) ) ) /\ h : N -1-1-onto-> _om ) -> E. f ( f Fn N /\ A. n e. N ( F =/= (/) -> ( f ` n ) e. F ) ) ) |
| 74 | 73 | 3exp | |- ( k = ( n e. N |-> F ) -> ( ( g Fn _om /\ A. m e. _om ( ( ( k o. `' h ) ` m ) =/= (/) -> ( g ` m ) e. ( ( k o. `' h ) ` m ) ) ) -> ( h : N -1-1-onto-> _om -> E. f ( f Fn N /\ A. n e. N ( F =/= (/) -> ( f ` n ) e. F ) ) ) ) ) |
| 75 | 74 | exlimdv | |- ( k = ( n e. N |-> F ) -> ( E. g ( g Fn _om /\ A. m e. _om ( ( ( k o. `' h ) ` m ) =/= (/) -> ( g ` m ) e. ( ( k o. `' h ) ` m ) ) ) -> ( h : N -1-1-onto-> _om -> E. f ( f Fn N /\ A. n e. N ( F =/= (/) -> ( f ` n ) e. F ) ) ) ) ) |
| 76 | 9 75 | mpi | |- ( k = ( n e. N |-> F ) -> ( h : N -1-1-onto-> _om -> E. f ( f Fn N /\ A. n e. N ( F =/= (/) -> ( f ` n ) e. F ) ) ) ) |
| 77 | 76 | exlimdv | |- ( k = ( n e. N |-> F ) -> ( E. h h : N -1-1-onto-> _om -> E. f ( f Fn N /\ A. n e. N ( F =/= (/) -> ( f ` n ) e. F ) ) ) ) |
| 78 | 8 77 | mpi | |- ( k = ( n e. N |-> F ) -> E. f ( f Fn N /\ A. n e. N ( F =/= (/) -> ( f ` n ) e. F ) ) ) |
| 79 | 6 78 | vtocle | |- E. f ( f Fn N /\ A. n e. N ( F =/= (/) -> ( f ` n ) e. F ) ) |