This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A possibly more useful version of ax-cc using sequences instead of countable sets. The Axiom of Infinity is needed to prove this, and indeed this implies the Axiom of Infinity. (Contributed by Mario Carneiro, 8-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axcc2 | ⊢ ∃ 𝑔 ( 𝑔 Fn ω ∧ ∀ 𝑛 ∈ ω ( ( 𝐹 ‘ 𝑛 ) ≠ ∅ → ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv | ⊢ Ⅎ 𝑛 if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) | |
| 2 | nfcv | ⊢ Ⅎ 𝑚 if ( ( 𝐹 ‘ 𝑛 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑛 ) ) | |
| 3 | fveqeq2 | ⊢ ( 𝑚 = 𝑛 → ( ( 𝐹 ‘ 𝑚 ) = ∅ ↔ ( 𝐹 ‘ 𝑛 ) = ∅ ) ) | |
| 4 | fveq2 | ⊢ ( 𝑚 = 𝑛 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑛 ) ) | |
| 5 | 3 4 | ifbieq2d | ⊢ ( 𝑚 = 𝑛 → if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) = if ( ( 𝐹 ‘ 𝑛 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑛 ) ) ) |
| 6 | 1 2 5 | cbvmpt | ⊢ ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) = ( 𝑛 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑛 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑛 ) ) ) |
| 7 | nfcv | ⊢ Ⅎ 𝑛 ( { 𝑚 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) | |
| 8 | nfcv | ⊢ Ⅎ 𝑚 { 𝑛 } | |
| 9 | nffvmpt1 | ⊢ Ⅎ 𝑚 ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑛 ) | |
| 10 | 8 9 | nfxp | ⊢ Ⅎ 𝑚 ( { 𝑛 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑛 ) ) |
| 11 | sneq | ⊢ ( 𝑚 = 𝑛 → { 𝑚 } = { 𝑛 } ) | |
| 12 | fveq2 | ⊢ ( 𝑚 = 𝑛 → ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) = ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑛 ) ) | |
| 13 | 11 12 | xpeq12d | ⊢ ( 𝑚 = 𝑛 → ( { 𝑚 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) = ( { 𝑛 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑛 ) ) ) |
| 14 | 7 10 13 | cbvmpt | ⊢ ( 𝑚 ∈ ω ↦ ( { 𝑚 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) = ( 𝑛 ∈ ω ↦ ( { 𝑛 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑛 ) ) ) |
| 15 | nfcv | ⊢ Ⅎ 𝑛 ( 2nd ‘ ( 𝑓 ‘ ( ( 𝑚 ∈ ω ↦ ( { 𝑚 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) | |
| 16 | nfcv | ⊢ Ⅎ 𝑚 2nd | |
| 17 | nfcv | ⊢ Ⅎ 𝑚 𝑓 | |
| 18 | nffvmpt1 | ⊢ Ⅎ 𝑚 ( ( 𝑚 ∈ ω ↦ ( { 𝑚 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) ‘ 𝑛 ) | |
| 19 | 17 18 | nffv | ⊢ Ⅎ 𝑚 ( 𝑓 ‘ ( ( 𝑚 ∈ ω ↦ ( { 𝑚 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) ‘ 𝑛 ) ) |
| 20 | 16 19 | nffv | ⊢ Ⅎ 𝑚 ( 2nd ‘ ( 𝑓 ‘ ( ( 𝑚 ∈ ω ↦ ( { 𝑚 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) ‘ 𝑛 ) ) ) |
| 21 | 2fveq3 | ⊢ ( 𝑚 = 𝑛 → ( 𝑓 ‘ ( ( 𝑚 ∈ ω ↦ ( { 𝑚 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) = ( 𝑓 ‘ ( ( 𝑚 ∈ ω ↦ ( { 𝑚 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) ‘ 𝑛 ) ) ) | |
| 22 | 21 | fveq2d | ⊢ ( 𝑚 = 𝑛 → ( 2nd ‘ ( 𝑓 ‘ ( ( 𝑚 ∈ ω ↦ ( { 𝑚 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) = ( 2nd ‘ ( 𝑓 ‘ ( ( 𝑚 ∈ ω ↦ ( { 𝑚 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) ‘ 𝑛 ) ) ) ) |
| 23 | 15 20 22 | cbvmpt | ⊢ ( 𝑚 ∈ ω ↦ ( 2nd ‘ ( 𝑓 ‘ ( ( 𝑚 ∈ ω ↦ ( { 𝑚 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) ) = ( 𝑛 ∈ ω ↦ ( 2nd ‘ ( 𝑓 ‘ ( ( 𝑚 ∈ ω ↦ ( { 𝑚 } × ( ( 𝑚 ∈ ω ↦ if ( ( 𝐹 ‘ 𝑚 ) = ∅ , { ∅ } , ( 𝐹 ‘ 𝑚 ) ) ) ‘ 𝑚 ) ) ) ‘ 𝑛 ) ) ) ) |
| 24 | 6 14 23 | axcc2lem | ⊢ ∃ 𝑔 ( 𝑔 Fn ω ∧ ∀ 𝑛 ∈ ω ( ( 𝐹 ‘ 𝑛 ) ≠ ∅ → ( 𝑔 ‘ 𝑛 ) ∈ ( 𝐹 ‘ 𝑛 ) ) ) |