This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An atomic, complete, orthomodular lattice is atomistic i.e. every element is the join of the atoms under it. See remark before Proposition 1 in Kalmbach p. 140; also remark in BeltramettiCassinelli p. 98. ( hatomistici analog.) (Contributed by NM, 5-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atlatmstc.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| atlatmstc.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| atlatmstc.u | ⊢ 1 = ( lub ‘ 𝐾 ) | ||
| atlatmstc.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | atlatmstc | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atlatmstc.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | atlatmstc.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | atlatmstc.u | ⊢ 1 = ( lub ‘ 𝐾 ) | |
| 4 | atlatmstc.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 5 | simpl2 | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ CLat ) | |
| 6 | ssrab2 | ⊢ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ⊆ 𝐵 | |
| 7 | 1 4 | atssbase | ⊢ 𝐴 ⊆ 𝐵 |
| 8 | rabss2 | ⊢ ( 𝐴 ⊆ 𝐵 → { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ⊆ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ) | |
| 9 | 7 8 | ax-mp | ⊢ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ⊆ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } |
| 10 | 1 2 3 | lubss | ⊢ ( ( 𝐾 ∈ CLat ∧ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ⊆ 𝐵 ∧ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ⊆ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ) → ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ≤ ( 1 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ) ) |
| 11 | 6 9 10 | mp3an23 | ⊢ ( 𝐾 ∈ CLat → ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ≤ ( 1 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ) ) |
| 12 | 5 11 | syl | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ≤ ( 1 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ) ) |
| 13 | atlpos | ⊢ ( 𝐾 ∈ AtLat → 𝐾 ∈ Poset ) | |
| 14 | 13 | 3ad2ant3 | ⊢ ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) → 𝐾 ∈ Poset ) |
| 15 | simpl | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ Poset ) | |
| 16 | simpr | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 17 | 1 2 3 15 16 | lubid | ⊢ ( ( 𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ) → ( 1 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ) = 𝑋 ) |
| 18 | 14 17 | sylan | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( 1 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ) = 𝑋 ) |
| 19 | 12 18 | breqtrd | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ≤ 𝑋 ) |
| 20 | breq1 | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ≤ 𝑋 ↔ 𝑥 ≤ 𝑋 ) ) | |
| 21 | 20 | elrab | ⊢ ( 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑋 ) ) |
| 22 | simpll2 | ⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) → 𝐾 ∈ CLat ) | |
| 23 | ssrab2 | ⊢ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ⊆ 𝐴 | |
| 24 | 23 7 | sstri | ⊢ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ⊆ 𝐵 |
| 25 | 1 2 3 | lubel | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ∧ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ⊆ 𝐵 ) → 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) |
| 26 | 24 25 | mp3an3 | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) → 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) |
| 27 | 22 26 | sylancom | ⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) → 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) |
| 28 | 27 | ex | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } → 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) |
| 29 | 21 28 | biimtrrid | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑋 ) → 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) |
| 30 | 29 | expdimp | ⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ≤ 𝑋 → 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) |
| 31 | simpll3 | ⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐾 ∈ AtLat ) | |
| 32 | eqid | ⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) | |
| 33 | 32 4 | atn0 | ⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≠ ( 0. ‘ 𝐾 ) ) |
| 34 | 31 33 | sylancom | ⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ≠ ( 0. ‘ 𝐾 ) ) |
| 35 | 34 | adantr | ⊢ ( ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) → 𝑥 ≠ ( 0. ‘ 𝐾 ) ) |
| 36 | simpl3 | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ AtLat ) | |
| 37 | atllat | ⊢ ( 𝐾 ∈ AtLat → 𝐾 ∈ Lat ) | |
| 38 | 36 37 | syl | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ Lat ) |
| 39 | 38 | adantr | ⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝐾 ∈ Lat ) |
| 40 | 1 4 | atbase | ⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) |
| 41 | 40 | adantl | ⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) |
| 42 | 1 3 | clatlubcl | ⊢ ( ( 𝐾 ∈ CLat ∧ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ⊆ 𝐵 ) → ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ∈ 𝐵 ) |
| 43 | 5 24 42 | sylancl | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ∈ 𝐵 ) |
| 44 | 43 | adantr | ⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ∈ 𝐵 ) |
| 45 | simpl1 | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ OML ) | |
| 46 | omlop | ⊢ ( 𝐾 ∈ OML → 𝐾 ∈ OP ) | |
| 47 | 45 46 | syl | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → 𝐾 ∈ OP ) |
| 48 | eqid | ⊢ ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 ) | |
| 49 | 1 48 | opoccl | ⊢ ( ( 𝐾 ∈ OP ∧ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ∈ 𝐵 ) |
| 50 | 47 43 49 | syl2anc | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ∈ 𝐵 ) |
| 51 | 50 | adantr | ⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ∈ 𝐵 ) |
| 52 | eqid | ⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) | |
| 53 | 1 2 52 | latlem12 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑥 ∈ 𝐵 ∧ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ∈ 𝐵 ) ) → ( ( 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ∧ 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ↔ 𝑥 ≤ ( ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) ) |
| 54 | 39 41 44 51 53 | syl13anc | ⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ∧ 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ↔ 𝑥 ≤ ( ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) ) |
| 55 | 1 48 52 32 | opnoncon | ⊢ ( ( 𝐾 ∈ OP ∧ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ∈ 𝐵 ) → ( ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) = ( 0. ‘ 𝐾 ) ) |
| 56 | 47 43 55 | syl2anc | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) = ( 0. ‘ 𝐾 ) ) |
| 57 | 56 | breq2d | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝑥 ≤ ( ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ↔ 𝑥 ≤ ( 0. ‘ 𝐾 ) ) ) |
| 58 | 57 | adantr | ⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ≤ ( ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ↔ 𝑥 ≤ ( 0. ‘ 𝐾 ) ) ) |
| 59 | 1 2 32 | ople0 | ⊢ ( ( 𝐾 ∈ OP ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ≤ ( 0. ‘ 𝐾 ) ↔ 𝑥 = ( 0. ‘ 𝐾 ) ) ) |
| 60 | 47 40 59 | syl2an | ⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ≤ ( 0. ‘ 𝐾 ) ↔ 𝑥 = ( 0. ‘ 𝐾 ) ) ) |
| 61 | 54 58 60 | 3bitrd | ⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ∧ 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ↔ 𝑥 = ( 0. ‘ 𝐾 ) ) ) |
| 62 | 61 | biimpa | ⊢ ( ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ∧ 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) → 𝑥 = ( 0. ‘ 𝐾 ) ) |
| 63 | 62 | expr | ⊢ ( ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) → ( 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) → 𝑥 = ( 0. ‘ 𝐾 ) ) ) |
| 64 | 63 | necon3ad | ⊢ ( ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) → ( 𝑥 ≠ ( 0. ‘ 𝐾 ) → ¬ 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) |
| 65 | 35 64 | mpd | ⊢ ( ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) → ¬ 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) |
| 66 | 65 | ex | ⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ≤ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) → ¬ 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) |
| 67 | 30 66 | syld | ⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ≤ 𝑋 → ¬ 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) |
| 68 | imnan | ⊢ ( ( 𝑥 ≤ 𝑋 → ¬ 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ↔ ¬ ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) | |
| 69 | 67 68 | sylib | ⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ¬ ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) |
| 70 | simplr | ⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) | |
| 71 | 1 2 52 | latlem12 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ∈ 𝐵 ) ) → ( ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ↔ 𝑥 ≤ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) ) |
| 72 | 39 41 70 51 71 | syl13anc | ⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ≤ 𝑋 ∧ 𝑥 ≤ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ↔ 𝑥 ≤ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) ) |
| 73 | 69 72 | mtbid | ⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑥 ≤ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) |
| 74 | 73 | nrexdv | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ¬ ∃ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) |
| 75 | simpll3 | ⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ≠ ( 0. ‘ 𝐾 ) ) → 𝐾 ∈ AtLat ) | |
| 76 | simpr | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 77 | 1 52 | latmcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ∈ 𝐵 ) → ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ∈ 𝐵 ) |
| 78 | 38 76 50 77 | syl3anc | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ∈ 𝐵 ) |
| 79 | 78 | adantr | ⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ≠ ( 0. ‘ 𝐾 ) ) → ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ∈ 𝐵 ) |
| 80 | simpr | ⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ≠ ( 0. ‘ 𝐾 ) ) → ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ≠ ( 0. ‘ 𝐾 ) ) | |
| 81 | 1 2 32 4 | atlex | ⊢ ( ( 𝐾 ∈ AtLat ∧ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ∈ 𝐵 ∧ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ≠ ( 0. ‘ 𝐾 ) ) → ∃ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) |
| 82 | 75 79 80 81 | syl3anc | ⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ≠ ( 0. ‘ 𝐾 ) ) → ∃ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) |
| 83 | 82 | ex | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ≠ ( 0. ‘ 𝐾 ) → ∃ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) ) ) |
| 84 | 83 | necon1bd | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( ¬ ∃ 𝑥 ∈ 𝐴 𝑥 ≤ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) → ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) = ( 0. ‘ 𝐾 ) ) ) |
| 85 | 74 84 | mpd | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) = ( 0. ‘ 𝐾 ) ) |
| 86 | 1 2 52 48 32 | omllaw3 | ⊢ ( ( 𝐾 ∈ OML ∧ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ≤ 𝑋 ∧ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) = ( 0. ‘ 𝐾 ) ) → ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) = 𝑋 ) ) |
| 87 | 45 43 76 86 | syl3anc | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( ( ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ≤ 𝑋 ∧ ( 𝑋 ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) ) ) = ( 0. ‘ 𝐾 ) ) → ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) = 𝑋 ) ) |
| 88 | 19 85 87 | mp2and | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( 1 ‘ { 𝑦 ∈ 𝐴 ∣ 𝑦 ≤ 𝑋 } ) = 𝑋 ) |