This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The LUB of elements less than or equal to a fixed value equals that value. (Contributed by NM, 19-Oct-2011) (Revised by NM, 7-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lubid.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| lubid.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| lubid.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | ||
| lubid.k | ⊢ ( 𝜑 → 𝐾 ∈ Poset ) | ||
| lubid.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| Assertion | lubid | ⊢ ( 𝜑 → ( 𝑈 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lubid.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | lubid.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | lubid.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | |
| 4 | lubid.k | ⊢ ( 𝜑 → 𝐾 ∈ Poset ) | |
| 5 | lubid.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | biid | ⊢ ( ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑥 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤 ) ) ↔ ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑥 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤 ) ) ) | |
| 7 | ssrab2 | ⊢ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ⊆ 𝐵 | |
| 8 | 7 | a1i | ⊢ ( 𝜑 → { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ⊆ 𝐵 ) |
| 9 | 1 2 3 6 4 8 | lubval | ⊢ ( 𝜑 → ( 𝑈 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ) = ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑥 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤 ) ) ) ) |
| 10 | 1 2 3 4 5 | lublecllem | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑥 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤 ) ) ↔ 𝑥 = 𝑋 ) ) |
| 11 | 5 10 | riota5 | ⊢ ( 𝜑 → ( ℩ 𝑥 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑥 ∧ ∀ 𝑤 ∈ 𝐵 ( ∀ 𝑧 ∈ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } 𝑧 ≤ 𝑤 → 𝑥 ≤ 𝑤 ) ) ) = 𝑋 ) |
| 12 | 9 11 | eqtrd | ⊢ ( 𝜑 → ( 𝑈 ‘ { 𝑦 ∈ 𝐵 ∣ 𝑦 ≤ 𝑋 } ) = 𝑋 ) |