This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element of a set is less than or equal to the least upper bound of the set. (Contributed by NM, 21-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lublem.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| lublem.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| lublem.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | ||
| Assertion | lubel | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑋 ∈ 𝑆 ∧ 𝑆 ⊆ 𝐵 ) → 𝑋 ≤ ( 𝑈 ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lublem.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | lublem.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | lublem.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | |
| 4 | clatl | ⊢ ( 𝐾 ∈ CLat → 𝐾 ∈ Lat ) | |
| 5 | ssel | ⊢ ( 𝑆 ⊆ 𝐵 → ( 𝑋 ∈ 𝑆 → 𝑋 ∈ 𝐵 ) ) | |
| 6 | 5 | impcom | ⊢ ( ( 𝑋 ∈ 𝑆 ∧ 𝑆 ⊆ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
| 7 | 1 3 | lubsn | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ) → ( 𝑈 ‘ { 𝑋 } ) = 𝑋 ) |
| 8 | 4 6 7 | syl2an | ⊢ ( ( 𝐾 ∈ CLat ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑆 ⊆ 𝐵 ) ) → ( 𝑈 ‘ { 𝑋 } ) = 𝑋 ) |
| 9 | 8 | 3impb | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑋 ∈ 𝑆 ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑈 ‘ { 𝑋 } ) = 𝑋 ) |
| 10 | snssi | ⊢ ( 𝑋 ∈ 𝑆 → { 𝑋 } ⊆ 𝑆 ) | |
| 11 | 1 2 3 | lubss | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ { 𝑋 } ⊆ 𝑆 ) → ( 𝑈 ‘ { 𝑋 } ) ≤ ( 𝑈 ‘ 𝑆 ) ) |
| 12 | 10 11 | syl3an3 | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝑆 ) → ( 𝑈 ‘ { 𝑋 } ) ≤ ( 𝑈 ‘ 𝑆 ) ) |
| 13 | 12 | 3com23 | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑋 ∈ 𝑆 ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑈 ‘ { 𝑋 } ) ≤ ( 𝑈 ‘ 𝑆 ) ) |
| 14 | 9 13 | eqbrtrrd | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑋 ∈ 𝑆 ∧ 𝑆 ⊆ 𝐵 ) → 𝑋 ≤ ( 𝑈 ‘ 𝑆 ) ) |