This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ordering of two Hilbert lattice elements is determined by the atoms under them. ( chrelat3 analog.) (Contributed by NM, 5-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atlatle.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| atlatle.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| atlatle.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | atlatle | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 ↔ ∀ 𝑝 ∈ 𝐴 ( 𝑝 ≤ 𝑋 → 𝑝 ≤ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atlatle.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | atlatle.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | atlatle.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | simpl13 | ⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → 𝐾 ∈ AtLat ) | |
| 5 | atlpos | ⊢ ( 𝐾 ∈ AtLat → 𝐾 ∈ Poset ) | |
| 6 | 4 5 | syl | ⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → 𝐾 ∈ Poset ) |
| 7 | 1 3 | atbase | ⊢ ( 𝑝 ∈ 𝐴 → 𝑝 ∈ 𝐵 ) |
| 8 | 7 | adantl | ⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → 𝑝 ∈ 𝐵 ) |
| 9 | simpl2 | ⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → 𝑋 ∈ 𝐵 ) | |
| 10 | simpl3 | ⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → 𝑌 ∈ 𝐵 ) | |
| 11 | 1 2 | postr | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑝 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑝 ≤ 𝑋 ∧ 𝑋 ≤ 𝑌 ) → 𝑝 ≤ 𝑌 ) ) |
| 12 | 6 8 9 10 11 | syl13anc | ⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( ( 𝑝 ≤ 𝑋 ∧ 𝑋 ≤ 𝑌 ) → 𝑝 ≤ 𝑌 ) ) |
| 13 | 12 | expcomd | ⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑝 ∈ 𝐴 ) → ( 𝑋 ≤ 𝑌 → ( 𝑝 ≤ 𝑋 → 𝑝 ≤ 𝑌 ) ) ) |
| 14 | 13 | ralrimdva | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 → ∀ 𝑝 ∈ 𝐴 ( 𝑝 ≤ 𝑋 → 𝑝 ≤ 𝑌 ) ) ) |
| 15 | ss2rab | ⊢ ( { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ 𝑋 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ 𝑌 } ↔ ∀ 𝑝 ∈ 𝐴 ( 𝑝 ≤ 𝑋 → 𝑝 ≤ 𝑌 ) ) | |
| 16 | simpl12 | ⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ 𝑋 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ 𝑌 } ) → 𝐾 ∈ CLat ) | |
| 17 | ssrab2 | ⊢ { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ 𝑌 } ⊆ 𝐴 | |
| 18 | 1 3 | atssbase | ⊢ 𝐴 ⊆ 𝐵 |
| 19 | 17 18 | sstri | ⊢ { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ 𝑌 } ⊆ 𝐵 |
| 20 | eqid | ⊢ ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 ) | |
| 21 | 1 2 20 | lubss | ⊢ ( ( 𝐾 ∈ CLat ∧ { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ 𝑌 } ⊆ 𝐵 ∧ { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ 𝑋 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ 𝑌 } ) → ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ 𝑋 } ) ≤ ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ 𝑌 } ) ) |
| 22 | 19 21 | mp3an2 | ⊢ ( ( 𝐾 ∈ CLat ∧ { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ 𝑋 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ 𝑌 } ) → ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ 𝑋 } ) ≤ ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ 𝑌 } ) ) |
| 23 | 16 22 | sylancom | ⊢ ( ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ 𝑋 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ 𝑌 } ) → ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ 𝑋 } ) ≤ ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ 𝑌 } ) ) |
| 24 | 23 | ex | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ 𝑋 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ 𝑌 } → ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ 𝑋 } ) ≤ ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ 𝑌 } ) ) ) |
| 25 | 1 2 20 3 | atlatmstc | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ) → ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ 𝑋 } ) = 𝑋 ) |
| 26 | 25 | 3adant3 | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ 𝑋 } ) = 𝑋 ) |
| 27 | 1 2 20 3 | atlatmstc | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑌 ∈ 𝐵 ) → ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ 𝑌 } ) = 𝑌 ) |
| 28 | 27 | 3adant2 | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ 𝑌 } ) = 𝑌 ) |
| 29 | 26 28 | breq12d | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ 𝑋 } ) ≤ ( ( lub ‘ 𝐾 ) ‘ { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ 𝑌 } ) ↔ 𝑋 ≤ 𝑌 ) ) |
| 30 | 24 29 | sylibd | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ 𝑋 } ⊆ { 𝑝 ∈ 𝐴 ∣ 𝑝 ≤ 𝑌 } → 𝑋 ≤ 𝑌 ) ) |
| 31 | 15 30 | biimtrrid | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑝 ∈ 𝐴 ( 𝑝 ≤ 𝑋 → 𝑝 ≤ 𝑌 ) → 𝑋 ≤ 𝑌 ) ) |
| 32 | 14 31 | impbid | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝐾 ∈ CLat ∧ 𝐾 ∈ AtLat ) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 ↔ ∀ 𝑝 ∈ 𝐴 ( 𝑝 ≤ 𝑋 → 𝑝 ≤ 𝑌 ) ) ) |