This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Orthomodular law equivalent. Theorem 2(ii) of Kalmbach p. 22. ( pjoml analog.) (Contributed by NM, 19-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | omllaw3.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| omllaw3.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| omllaw3.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| omllaw3.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | ||
| omllaw3.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | ||
| Assertion | omllaw3 | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ≤ 𝑌 ∧ ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) = 0 ) → 𝑋 = 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omllaw3.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | omllaw3.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | omllaw3.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 4 | omllaw3.o | ⊢ ⊥ = ( oc ‘ 𝐾 ) | |
| 5 | omllaw3.z | ⊢ 0 = ( 0. ‘ 𝐾 ) | |
| 6 | oveq2 | ⊢ ( ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) = 0 → ( 𝑋 ( join ‘ 𝐾 ) ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) ) = ( 𝑋 ( join ‘ 𝐾 ) 0 ) ) | |
| 7 | 6 | adantl | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) = 0 ) → ( 𝑋 ( join ‘ 𝐾 ) ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) ) = ( 𝑋 ( join ‘ 𝐾 ) 0 ) ) |
| 8 | omlol | ⊢ ( 𝐾 ∈ OML → 𝐾 ∈ OL ) | |
| 9 | eqid | ⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) | |
| 10 | 1 9 5 | olj01 | ⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ( join ‘ 𝐾 ) 0 ) = 𝑋 ) |
| 11 | 8 10 | sylan | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ( join ‘ 𝐾 ) 0 ) = 𝑋 ) |
| 12 | 11 | 3adant3 | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ( join ‘ 𝐾 ) 0 ) = 𝑋 ) |
| 13 | 12 | adantr | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) = 0 ) → ( 𝑋 ( join ‘ 𝐾 ) 0 ) = 𝑋 ) |
| 14 | 7 13 | eqtr2d | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) = 0 ) → 𝑋 = ( 𝑋 ( join ‘ 𝐾 ) ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) ) ) |
| 15 | 14 | adantrl | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑌 ∧ ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) = 0 ) ) → 𝑋 = ( 𝑋 ( join ‘ 𝐾 ) ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) ) ) |
| 16 | 1 2 9 3 4 | omllaw | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 → 𝑌 = ( 𝑋 ( join ‘ 𝐾 ) ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) ) ) ) |
| 17 | 16 | imp | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → 𝑌 = ( 𝑋 ( join ‘ 𝐾 ) ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) ) ) |
| 18 | 17 | adantrr | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑌 ∧ ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) = 0 ) ) → 𝑌 = ( 𝑋 ( join ‘ 𝐾 ) ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) ) ) |
| 19 | 15 18 | eqtr4d | ⊢ ( ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑌 ∧ ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) = 0 ) ) → 𝑋 = 𝑌 ) |
| 20 | 19 | ex | ⊢ ( ( 𝐾 ∈ OML ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ≤ 𝑌 ∧ ( 𝑌 ∧ ( ⊥ ‘ 𝑋 ) ) = 0 ) → 𝑋 = 𝑌 ) ) |