This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: CH is atomistic, i.e. any element is the supremum of its atoms. Remark in Kalmbach p. 140. (Contributed by NM, 14-Aug-2002) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hatomistic.1 | ⊢ 𝐴 ∈ Cℋ | |
| Assertion | hatomistici | ⊢ 𝐴 = ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hatomistic.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | ssrab2 | ⊢ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ HAtoms | |
| 3 | atssch | ⊢ HAtoms ⊆ Cℋ | |
| 4 | 2 3 | sstri | ⊢ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ Cℋ |
| 5 | chsupcl | ⊢ ( { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ Cℋ → ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ∈ Cℋ ) | |
| 6 | 4 5 | ax-mp | ⊢ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ∈ Cℋ |
| 7 | 1 | chshii | ⊢ 𝐴 ∈ Sℋ |
| 8 | atelch | ⊢ ( 𝑦 ∈ HAtoms → 𝑦 ∈ Cℋ ) | |
| 9 | 8 | anim1i | ⊢ ( ( 𝑦 ∈ HAtoms ∧ 𝑦 ⊆ 𝐴 ) → ( 𝑦 ∈ Cℋ ∧ 𝑦 ⊆ 𝐴 ) ) |
| 10 | sseq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴 ) ) | |
| 11 | 10 | elrab | ⊢ ( 𝑦 ∈ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ↔ ( 𝑦 ∈ HAtoms ∧ 𝑦 ⊆ 𝐴 ) ) |
| 12 | 10 | elrab | ⊢ ( 𝑦 ∈ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } ↔ ( 𝑦 ∈ Cℋ ∧ 𝑦 ⊆ 𝐴 ) ) |
| 13 | 9 11 12 | 3imtr4i | ⊢ ( 𝑦 ∈ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } → 𝑦 ∈ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } ) |
| 14 | 13 | ssriv | ⊢ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } |
| 15 | ssrab2 | ⊢ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } ⊆ Cℋ | |
| 16 | chsupss | ⊢ ( ( { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ Cℋ ∧ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } ⊆ Cℋ ) → ( { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } → ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ⊆ ( ∨ℋ ‘ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } ) ) ) | |
| 17 | 4 15 16 | mp2an | ⊢ ( { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } → ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ⊆ ( ∨ℋ ‘ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } ) ) |
| 18 | 14 17 | ax-mp | ⊢ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ⊆ ( ∨ℋ ‘ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } ) |
| 19 | chsupid | ⊢ ( 𝐴 ∈ Cℋ → ( ∨ℋ ‘ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } ) = 𝐴 ) | |
| 20 | 1 19 | ax-mp | ⊢ ( ∨ℋ ‘ { 𝑥 ∈ Cℋ ∣ 𝑥 ⊆ 𝐴 } ) = 𝐴 |
| 21 | 18 20 | sseqtri | ⊢ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ⊆ 𝐴 |
| 22 | elssuni | ⊢ ( 𝑦 ∈ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } → 𝑦 ⊆ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) | |
| 23 | 11 22 | sylbir | ⊢ ( ( 𝑦 ∈ HAtoms ∧ 𝑦 ⊆ 𝐴 ) → 𝑦 ⊆ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) |
| 24 | chsupunss | ⊢ ( { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ Cℋ → ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) | |
| 25 | 4 24 | ax-mp | ⊢ ∪ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ⊆ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) |
| 26 | 23 25 | sstrdi | ⊢ ( ( 𝑦 ∈ HAtoms ∧ 𝑦 ⊆ 𝐴 ) → 𝑦 ⊆ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) |
| 27 | 26 | ex | ⊢ ( 𝑦 ∈ HAtoms → ( 𝑦 ⊆ 𝐴 → 𝑦 ⊆ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) |
| 28 | atne0 | ⊢ ( 𝑦 ∈ HAtoms → 𝑦 ≠ 0ℋ ) | |
| 29 | 28 | adantr | ⊢ ( ( 𝑦 ∈ HAtoms ∧ 𝑦 ⊆ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) → 𝑦 ≠ 0ℋ ) |
| 30 | ssin | ⊢ ( ( 𝑦 ⊆ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ∧ 𝑦 ⊆ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) ↔ 𝑦 ⊆ ( ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ∩ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) ) | |
| 31 | 6 | chocini | ⊢ ( ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ∩ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) = 0ℋ |
| 32 | 31 | sseq2i | ⊢ ( 𝑦 ⊆ ( ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ∩ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) ↔ 𝑦 ⊆ 0ℋ ) |
| 33 | 30 32 | bitr2i | ⊢ ( 𝑦 ⊆ 0ℋ ↔ ( 𝑦 ⊆ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ∧ 𝑦 ⊆ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) ) |
| 34 | chle0 | ⊢ ( 𝑦 ∈ Cℋ → ( 𝑦 ⊆ 0ℋ ↔ 𝑦 = 0ℋ ) ) | |
| 35 | 8 34 | syl | ⊢ ( 𝑦 ∈ HAtoms → ( 𝑦 ⊆ 0ℋ ↔ 𝑦 = 0ℋ ) ) |
| 36 | 33 35 | bitr3id | ⊢ ( 𝑦 ∈ HAtoms → ( ( 𝑦 ⊆ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ∧ 𝑦 ⊆ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) ↔ 𝑦 = 0ℋ ) ) |
| 37 | 36 | biimpa | ⊢ ( ( 𝑦 ∈ HAtoms ∧ ( 𝑦 ⊆ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ∧ 𝑦 ⊆ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) ) → 𝑦 = 0ℋ ) |
| 38 | 37 | expr | ⊢ ( ( 𝑦 ∈ HAtoms ∧ 𝑦 ⊆ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) → ( 𝑦 ⊆ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) → 𝑦 = 0ℋ ) ) |
| 39 | 38 | necon3ad | ⊢ ( ( 𝑦 ∈ HAtoms ∧ 𝑦 ⊆ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) → ( 𝑦 ≠ 0ℋ → ¬ 𝑦 ⊆ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) ) |
| 40 | 29 39 | mpd | ⊢ ( ( 𝑦 ∈ HAtoms ∧ 𝑦 ⊆ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) → ¬ 𝑦 ⊆ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) |
| 41 | 40 | ex | ⊢ ( 𝑦 ∈ HAtoms → ( 𝑦 ⊆ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) → ¬ 𝑦 ⊆ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) ) |
| 42 | 27 41 | syld | ⊢ ( 𝑦 ∈ HAtoms → ( 𝑦 ⊆ 𝐴 → ¬ 𝑦 ⊆ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) ) |
| 43 | imnan | ⊢ ( ( 𝑦 ⊆ 𝐴 → ¬ 𝑦 ⊆ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) ↔ ¬ ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ⊆ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) ) | |
| 44 | 42 43 | sylib | ⊢ ( 𝑦 ∈ HAtoms → ¬ ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ⊆ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) ) |
| 45 | ssin | ⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ⊆ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) ↔ 𝑦 ⊆ ( 𝐴 ∩ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) ) | |
| 46 | 44 45 | sylnib | ⊢ ( 𝑦 ∈ HAtoms → ¬ 𝑦 ⊆ ( 𝐴 ∩ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) ) |
| 47 | 46 | nrex | ⊢ ¬ ∃ 𝑦 ∈ HAtoms 𝑦 ⊆ ( 𝐴 ∩ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) |
| 48 | 6 | choccli | ⊢ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ∈ Cℋ |
| 49 | 1 48 | chincli | ⊢ ( 𝐴 ∩ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) ∈ Cℋ |
| 50 | 49 | hatomici | ⊢ ( ( 𝐴 ∩ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) ≠ 0ℋ → ∃ 𝑦 ∈ HAtoms 𝑦 ⊆ ( 𝐴 ∩ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) ) |
| 51 | 50 | necon1bi | ⊢ ( ¬ ∃ 𝑦 ∈ HAtoms 𝑦 ⊆ ( 𝐴 ∩ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) → ( 𝐴 ∩ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) = 0ℋ ) |
| 52 | 47 51 | ax-mp | ⊢ ( 𝐴 ∩ ( ⊥ ‘ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) ) ) = 0ℋ |
| 53 | 6 7 21 52 | omlsii | ⊢ ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) = 𝐴 |
| 54 | 53 | eqcomi | ⊢ 𝐴 = ( ∨ℋ ‘ { 𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴 } ) |