This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset law for least upper bounds. ( chsupss analog.) (Contributed by NM, 20-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lublem.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| lublem.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| lublem.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | ||
| Assertion | lubss | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) → ( 𝑈 ‘ 𝑆 ) ≤ ( 𝑈 ‘ 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lublem.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | lublem.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | lublem.u | ⊢ 𝑈 = ( lub ‘ 𝐾 ) | |
| 4 | simp1 | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) → 𝐾 ∈ CLat ) | |
| 5 | sstr2 | ⊢ ( 𝑆 ⊆ 𝑇 → ( 𝑇 ⊆ 𝐵 → 𝑆 ⊆ 𝐵 ) ) | |
| 6 | 5 | impcom | ⊢ ( ( 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) → 𝑆 ⊆ 𝐵 ) |
| 7 | 6 | 3adant1 | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) → 𝑆 ⊆ 𝐵 ) |
| 8 | 1 3 | clatlubcl | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ) → ( 𝑈 ‘ 𝑇 ) ∈ 𝐵 ) |
| 9 | 8 | 3adant3 | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) → ( 𝑈 ‘ 𝑇 ) ∈ 𝐵 ) |
| 10 | 4 7 9 | 3jca | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) → ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝑈 ‘ 𝑇 ) ∈ 𝐵 ) ) |
| 11 | simpl1 | ⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) ∧ 𝑦 ∈ 𝑆 ) → 𝐾 ∈ CLat ) | |
| 12 | simpl2 | ⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑇 ⊆ 𝐵 ) | |
| 13 | ssel2 | ⊢ ( ( 𝑆 ⊆ 𝑇 ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝑇 ) | |
| 14 | 13 | 3ad2antl3 | ⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ 𝑇 ) |
| 15 | 1 2 3 | lubub | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑦 ∈ 𝑇 ) → 𝑦 ≤ ( 𝑈 ‘ 𝑇 ) ) |
| 16 | 11 12 14 15 | syl3anc | ⊢ ( ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ≤ ( 𝑈 ‘ 𝑇 ) ) |
| 17 | 16 | ralrimiva | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) → ∀ 𝑦 ∈ 𝑆 𝑦 ≤ ( 𝑈 ‘ 𝑇 ) ) |
| 18 | 1 2 3 | lubl | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵 ∧ ( 𝑈 ‘ 𝑇 ) ∈ 𝐵 ) → ( ∀ 𝑦 ∈ 𝑆 𝑦 ≤ ( 𝑈 ‘ 𝑇 ) → ( 𝑈 ‘ 𝑆 ) ≤ ( 𝑈 ‘ 𝑇 ) ) ) |
| 19 | 10 17 18 | sylc | ⊢ ( ( 𝐾 ∈ CLat ∧ 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝑇 ) → ( 𝑈 ‘ 𝑆 ) ≤ ( 𝑈 ‘ 𝑇 ) ) |