This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element is less than or equal to a meet iff the element is less than or equal to each argument of the meet. (Contributed by NM, 21-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latmle.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| latmle.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| latmle.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| Assertion | latlem12 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ≤ 𝑌 ∧ 𝑋 ≤ 𝑍 ) ↔ 𝑋 ≤ ( 𝑌 ∧ 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latmle.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | latmle.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | latmle.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 4 | latpos | ⊢ ( 𝐾 ∈ Lat → 𝐾 ∈ Poset ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐾 ∈ Poset ) |
| 6 | simpr2 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) | |
| 7 | simpr3 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑍 ∈ 𝐵 ) | |
| 8 | simpr1 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) | |
| 9 | eqid | ⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) | |
| 10 | simpl | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐾 ∈ Lat ) | |
| 11 | 1 9 3 10 6 7 | latcl2 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 〈 𝑌 , 𝑍 〉 ∈ dom ( join ‘ 𝐾 ) ∧ 〈 𝑌 , 𝑍 〉 ∈ dom ∧ ) ) |
| 12 | 11 | simprd | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 〈 𝑌 , 𝑍 〉 ∈ dom ∧ ) |
| 13 | 1 2 3 5 6 7 8 12 | meetle | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ≤ 𝑌 ∧ 𝑋 ≤ 𝑍 ) ↔ 𝑋 ≤ ( 𝑌 ∧ 𝑍 ) ) ) |