This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of atoms is a subset of the base set. ( atssch analog.) (Contributed by NM, 21-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atombase.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| atombase.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | atssbase | ⊢ 𝐴 ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atombase.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | atombase.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 3 | 1 2 | atbase | ⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) |
| 4 | 3 | ssriv | ⊢ 𝐴 ⊆ 𝐵 |