This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for assamulgscm (induction base). (Contributed by AV, 26-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | assamulgscm.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| assamulgscm.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| assamulgscm.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | ||
| assamulgscm.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| assamulgscm.g | ⊢ 𝐺 = ( mulGrp ‘ 𝐹 ) | ||
| assamulgscm.p | ⊢ ↑ = ( .g ‘ 𝐺 ) | ||
| assamulgscm.h | ⊢ 𝐻 = ( mulGrp ‘ 𝑊 ) | ||
| assamulgscm.e | ⊢ 𝐸 = ( .g ‘ 𝐻 ) | ||
| Assertion | assamulgscmlem1 | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 0 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 0 ↑ 𝐴 ) · ( 0 𝐸 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | assamulgscm.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | assamulgscm.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 3 | assamulgscm.b | ⊢ 𝐵 = ( Base ‘ 𝐹 ) | |
| 4 | assamulgscm.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 5 | assamulgscm.g | ⊢ 𝐺 = ( mulGrp ‘ 𝐹 ) | |
| 6 | assamulgscm.p | ⊢ ↑ = ( .g ‘ 𝐺 ) | |
| 7 | assamulgscm.h | ⊢ 𝐻 = ( mulGrp ‘ 𝑊 ) | |
| 8 | assamulgscm.e | ⊢ 𝐸 = ( .g ‘ 𝐻 ) | |
| 9 | assalmod | ⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod ) | |
| 10 | assaring | ⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ Ring ) | |
| 11 | eqid | ⊢ ( 1r ‘ 𝑊 ) = ( 1r ‘ 𝑊 ) | |
| 12 | 1 11 | ringidcl | ⊢ ( 𝑊 ∈ Ring → ( 1r ‘ 𝑊 ) ∈ 𝑉 ) |
| 13 | 10 12 | syl | ⊢ ( 𝑊 ∈ AssAlg → ( 1r ‘ 𝑊 ) ∈ 𝑉 ) |
| 14 | eqid | ⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) | |
| 15 | 1 2 4 14 | lmodvs1 | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 1r ‘ 𝑊 ) ∈ 𝑉 ) → ( ( 1r ‘ 𝐹 ) · ( 1r ‘ 𝑊 ) ) = ( 1r ‘ 𝑊 ) ) |
| 16 | 15 | eqcomd | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 1r ‘ 𝑊 ) ∈ 𝑉 ) → ( 1r ‘ 𝑊 ) = ( ( 1r ‘ 𝐹 ) · ( 1r ‘ 𝑊 ) ) ) |
| 17 | 9 13 16 | syl2anc | ⊢ ( 𝑊 ∈ AssAlg → ( 1r ‘ 𝑊 ) = ( ( 1r ‘ 𝐹 ) · ( 1r ‘ 𝑊 ) ) ) |
| 18 | 17 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 1r ‘ 𝑊 ) = ( ( 1r ‘ 𝐹 ) · ( 1r ‘ 𝑊 ) ) ) |
| 19 | 9 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → 𝑊 ∈ LMod ) |
| 20 | simpll | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → 𝐴 ∈ 𝐵 ) | |
| 21 | simplr | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → 𝑋 ∈ 𝑉 ) | |
| 22 | 1 2 4 3 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐴 · 𝑋 ) ∈ 𝑉 ) |
| 23 | 19 20 21 22 | syl3anc | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 𝐴 · 𝑋 ) ∈ 𝑉 ) |
| 24 | 7 1 | mgpbas | ⊢ 𝑉 = ( Base ‘ 𝐻 ) |
| 25 | 7 11 | ringidval | ⊢ ( 1r ‘ 𝑊 ) = ( 0g ‘ 𝐻 ) |
| 26 | 24 25 8 | mulg0 | ⊢ ( ( 𝐴 · 𝑋 ) ∈ 𝑉 → ( 0 𝐸 ( 𝐴 · 𝑋 ) ) = ( 1r ‘ 𝑊 ) ) |
| 27 | 23 26 | syl | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 0 𝐸 ( 𝐴 · 𝑋 ) ) = ( 1r ‘ 𝑊 ) ) |
| 28 | 5 3 | mgpbas | ⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 29 | 5 14 | ringidval | ⊢ ( 1r ‘ 𝐹 ) = ( 0g ‘ 𝐺 ) |
| 30 | 28 29 6 | mulg0 | ⊢ ( 𝐴 ∈ 𝐵 → ( 0 ↑ 𝐴 ) = ( 1r ‘ 𝐹 ) ) |
| 31 | 20 30 | syl | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 0 ↑ 𝐴 ) = ( 1r ‘ 𝐹 ) ) |
| 32 | 24 25 8 | mulg0 | ⊢ ( 𝑋 ∈ 𝑉 → ( 0 𝐸 𝑋 ) = ( 1r ‘ 𝑊 ) ) |
| 33 | 21 32 | syl | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 0 𝐸 𝑋 ) = ( 1r ‘ 𝑊 ) ) |
| 34 | 31 33 | oveq12d | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( ( 0 ↑ 𝐴 ) · ( 0 𝐸 𝑋 ) ) = ( ( 1r ‘ 𝐹 ) · ( 1r ‘ 𝑊 ) ) ) |
| 35 | 18 27 34 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑊 ∈ AssAlg ) → ( 0 𝐸 ( 𝐴 · 𝑋 ) ) = ( ( 0 ↑ 𝐴 ) · ( 0 𝐸 𝑋 ) ) ) |