This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subring of a unital algebra is a subspace and thus a subalgebra iff it contains all scalar multiples of the identity. (Contributed by Mario Carneiro, 9-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issubassa2.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
| issubassa2.l | ⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) | ||
| Assertion | issubassa2 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( 𝑆 ∈ 𝐿 ↔ ran 𝐴 ⊆ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubassa2.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
| 2 | issubassa2.l | ⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) | |
| 3 | eqid | ⊢ ( 1r ‘ 𝑊 ) = ( 1r ‘ 𝑊 ) | |
| 4 | eqid | ⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) | |
| 5 | 1 3 4 | rnascl | ⊢ ( 𝑊 ∈ AssAlg → ran 𝐴 = ( ( LSpan ‘ 𝑊 ) ‘ { ( 1r ‘ 𝑊 ) } ) ) |
| 6 | 5 | ad2antrr | ⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ 𝑆 ∈ 𝐿 ) → ran 𝐴 = ( ( LSpan ‘ 𝑊 ) ‘ { ( 1r ‘ 𝑊 ) } ) ) |
| 7 | assalmod | ⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod ) | |
| 8 | 7 | ad2antrr | ⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ 𝑆 ∈ 𝐿 ) → 𝑊 ∈ LMod ) |
| 9 | simpr | ⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ 𝑆 ∈ 𝐿 ) → 𝑆 ∈ 𝐿 ) | |
| 10 | 3 | subrg1cl | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → ( 1r ‘ 𝑊 ) ∈ 𝑆 ) |
| 11 | 10 | ad2antlr | ⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ 𝑆 ∈ 𝐿 ) → ( 1r ‘ 𝑊 ) ∈ 𝑆 ) |
| 12 | 2 4 8 9 11 | ellspsn5 | ⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ 𝑆 ∈ 𝐿 ) → ( ( LSpan ‘ 𝑊 ) ‘ { ( 1r ‘ 𝑊 ) } ) ⊆ 𝑆 ) |
| 13 | 6 12 | eqsstrd | ⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ 𝑆 ∈ 𝐿 ) → ran 𝐴 ⊆ 𝑆 ) |
| 14 | subrgsubg | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝑆 ∈ ( SubGrp ‘ 𝑊 ) ) | |
| 15 | 14 | ad2antlr | ⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) → 𝑆 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 16 | simplll | ⊢ ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝑆 ) ) → 𝑊 ∈ AssAlg ) | |
| 17 | simprl | ⊢ ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝑆 ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | |
| 18 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 19 | 18 | subrgss | ⊢ ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
| 20 | 19 | ad2antlr | ⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) → 𝑆 ⊆ ( Base ‘ 𝑊 ) ) |
| 21 | 20 | sselda | ⊢ ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
| 22 | 21 | adantrl | ⊢ ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝑆 ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
| 23 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 24 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 25 | eqid | ⊢ ( .r ‘ 𝑊 ) = ( .r ‘ 𝑊 ) | |
| 26 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 27 | 1 23 24 18 25 26 | asclmul1 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( ( 𝐴 ‘ 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) |
| 28 | 16 17 22 27 | syl3anc | ⊢ ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 𝐴 ‘ 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) |
| 29 | simpllr | ⊢ ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝑆 ) ) → 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) | |
| 30 | simplr | ⊢ ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ran 𝐴 ⊆ 𝑆 ) | |
| 31 | 1 23 24 | asclfn | ⊢ 𝐴 Fn ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 32 | 31 | a1i | ⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) → 𝐴 Fn ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 33 | fnfvelrn | ⊢ ( ( 𝐴 Fn ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝐴 ‘ 𝑥 ) ∈ ran 𝐴 ) | |
| 34 | 32 33 | sylan | ⊢ ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝐴 ‘ 𝑥 ) ∈ ran 𝐴 ) |
| 35 | 30 34 | sseldd | ⊢ ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( 𝐴 ‘ 𝑥 ) ∈ 𝑆 ) |
| 36 | 35 | adantrr | ⊢ ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝐴 ‘ 𝑥 ) ∈ 𝑆 ) |
| 37 | simprr | ⊢ ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝑆 ) ) → 𝑦 ∈ 𝑆 ) | |
| 38 | 25 | subrgmcl | ⊢ ( ( 𝑆 ∈ ( SubRing ‘ 𝑊 ) ∧ ( 𝐴 ‘ 𝑥 ) ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝐴 ‘ 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 ) ∈ 𝑆 ) |
| 39 | 29 36 37 38 | syl3anc | ⊢ ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝑆 ) ) → ( ( 𝐴 ‘ 𝑥 ) ( .r ‘ 𝑊 ) 𝑦 ) ∈ 𝑆 ) |
| 40 | 28 39 | eqeltrrd | ⊢ ( ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑆 ) |
| 41 | 40 | ralrimivva | ⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) → ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑆 ) |
| 42 | 23 24 18 26 2 | islss4 | ⊢ ( 𝑊 ∈ LMod → ( 𝑆 ∈ 𝐿 ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑆 ) ) ) |
| 43 | 7 42 | syl | ⊢ ( 𝑊 ∈ AssAlg → ( 𝑆 ∈ 𝐿 ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑆 ) ) ) |
| 44 | 43 | ad2antrr | ⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) → ( 𝑆 ∈ 𝐿 ↔ ( 𝑆 ∈ ( SubGrp ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑆 ) ) ) |
| 45 | 15 41 44 | mpbir2and | ⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) ∧ ran 𝐴 ⊆ 𝑆 ) → 𝑆 ∈ 𝐿 ) |
| 46 | 13 45 | impbida | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ∈ ( SubRing ‘ 𝑊 ) ) → ( 𝑆 ∈ 𝐿 ↔ ran 𝐴 ⊆ 𝑆 ) ) |