This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Evaluation of the Moore closure of a set. (Contributed by Stefan O'Rear, 31-Jan-2015) (Proof shortened by Fan Zheng, 6-Jun-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mrcfval.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | |
| Assertion | mrcval | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ) → ( 𝐹 ‘ 𝑈 ) = ∩ { 𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrcfval.f | ⊢ 𝐹 = ( mrCls ‘ 𝐶 ) | |
| 2 | 1 | mrcfval | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝐹 = ( 𝑥 ∈ 𝒫 𝑋 ↦ ∩ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ) ) |
| 3 | 2 | adantr | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ) → 𝐹 = ( 𝑥 ∈ 𝒫 𝑋 ↦ ∩ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } ) ) |
| 4 | sseq1 | ⊢ ( 𝑥 = 𝑈 → ( 𝑥 ⊆ 𝑠 ↔ 𝑈 ⊆ 𝑠 ) ) | |
| 5 | 4 | rabbidv | ⊢ ( 𝑥 = 𝑈 → { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } = { 𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠 } ) |
| 6 | 5 | inteqd | ⊢ ( 𝑥 = 𝑈 → ∩ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } = ∩ { 𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠 } ) |
| 7 | 6 | adantl | ⊢ ( ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ) ∧ 𝑥 = 𝑈 ) → ∩ { 𝑠 ∈ 𝐶 ∣ 𝑥 ⊆ 𝑠 } = ∩ { 𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠 } ) |
| 8 | mre1cl | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → 𝑋 ∈ 𝐶 ) | |
| 9 | elpw2g | ⊢ ( 𝑋 ∈ 𝐶 → ( 𝑈 ∈ 𝒫 𝑋 ↔ 𝑈 ⊆ 𝑋 ) ) | |
| 10 | 8 9 | syl | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) → ( 𝑈 ∈ 𝒫 𝑋 ↔ 𝑈 ⊆ 𝑋 ) ) |
| 11 | 10 | biimpar | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ) → 𝑈 ∈ 𝒫 𝑋 ) |
| 12 | sseq2 | ⊢ ( 𝑠 = 𝑋 → ( 𝑈 ⊆ 𝑠 ↔ 𝑈 ⊆ 𝑋 ) ) | |
| 13 | 8 | adantr | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ) → 𝑋 ∈ 𝐶 ) |
| 14 | simpr | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ) → 𝑈 ⊆ 𝑋 ) | |
| 15 | 12 13 14 | elrabd | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ) → 𝑋 ∈ { 𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠 } ) |
| 16 | 15 | ne0d | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ) → { 𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠 } ≠ ∅ ) |
| 17 | intex | ⊢ ( { 𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠 } ≠ ∅ ↔ ∩ { 𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠 } ∈ V ) | |
| 18 | 16 17 | sylib | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ) → ∩ { 𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠 } ∈ V ) |
| 19 | 3 7 11 18 | fvmptd | ⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ∧ 𝑈 ⊆ 𝑋 ) → ( 𝐹 ‘ 𝑈 ) = ∩ { 𝑠 ∈ 𝐶 ∣ 𝑈 ⊆ 𝑠 } ) |