This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the algebraic closure operation inside an associative algebra. (Contributed by Mario Carneiro, 7-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | aspval.a | ⊢ 𝐴 = ( AlgSpan ‘ 𝑊 ) | |
| aspval.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| aspval.l | ⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) | ||
| Assertion | aspval | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐴 ‘ 𝑆 ) = ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aspval.a | ⊢ 𝐴 = ( AlgSpan ‘ 𝑊 ) | |
| 2 | aspval.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 3 | aspval.l | ⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) | |
| 4 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) ) | |
| 5 | 4 2 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = 𝑉 ) |
| 6 | 5 | pweqd | ⊢ ( 𝑤 = 𝑊 → 𝒫 ( Base ‘ 𝑤 ) = 𝒫 𝑉 ) |
| 7 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( SubRing ‘ 𝑤 ) = ( SubRing ‘ 𝑊 ) ) | |
| 8 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( LSubSp ‘ 𝑤 ) = ( LSubSp ‘ 𝑊 ) ) | |
| 9 | 8 3 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( LSubSp ‘ 𝑤 ) = 𝐿 ) |
| 10 | 7 9 | ineq12d | ⊢ ( 𝑤 = 𝑊 → ( ( SubRing ‘ 𝑤 ) ∩ ( LSubSp ‘ 𝑤 ) ) = ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ) |
| 11 | 10 | rabeqdv | ⊢ ( 𝑤 = 𝑊 → { 𝑡 ∈ ( ( SubRing ‘ 𝑤 ) ∩ ( LSubSp ‘ 𝑤 ) ) ∣ 𝑠 ⊆ 𝑡 } = { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑠 ⊆ 𝑡 } ) |
| 12 | 11 | inteqd | ⊢ ( 𝑤 = 𝑊 → ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑤 ) ∩ ( LSubSp ‘ 𝑤 ) ) ∣ 𝑠 ⊆ 𝑡 } = ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑠 ⊆ 𝑡 } ) |
| 13 | 6 12 | mpteq12dv | ⊢ ( 𝑤 = 𝑊 → ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑤 ) ∩ ( LSubSp ‘ 𝑤 ) ) ∣ 𝑠 ⊆ 𝑡 } ) = ( 𝑠 ∈ 𝒫 𝑉 ↦ ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑠 ⊆ 𝑡 } ) ) |
| 14 | df-asp | ⊢ AlgSpan = ( 𝑤 ∈ AssAlg ↦ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ↦ ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑤 ) ∩ ( LSubSp ‘ 𝑤 ) ) ∣ 𝑠 ⊆ 𝑡 } ) ) | |
| 15 | 2 | fvexi | ⊢ 𝑉 ∈ V |
| 16 | 15 | pwex | ⊢ 𝒫 𝑉 ∈ V |
| 17 | 16 | mptex | ⊢ ( 𝑠 ∈ 𝒫 𝑉 ↦ ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑠 ⊆ 𝑡 } ) ∈ V |
| 18 | 13 14 17 | fvmpt | ⊢ ( 𝑊 ∈ AssAlg → ( AlgSpan ‘ 𝑊 ) = ( 𝑠 ∈ 𝒫 𝑉 ↦ ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑠 ⊆ 𝑡 } ) ) |
| 19 | 1 18 | eqtrid | ⊢ ( 𝑊 ∈ AssAlg → 𝐴 = ( 𝑠 ∈ 𝒫 𝑉 ↦ ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑠 ⊆ 𝑡 } ) ) |
| 20 | 19 | fveq1d | ⊢ ( 𝑊 ∈ AssAlg → ( 𝐴 ‘ 𝑆 ) = ( ( 𝑠 ∈ 𝒫 𝑉 ↦ ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑠 ⊆ 𝑡 } ) ‘ 𝑆 ) ) |
| 21 | 20 | adantr | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐴 ‘ 𝑆 ) = ( ( 𝑠 ∈ 𝒫 𝑉 ↦ ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑠 ⊆ 𝑡 } ) ‘ 𝑆 ) ) |
| 22 | eqid | ⊢ ( 𝑠 ∈ 𝒫 𝑉 ↦ ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑠 ⊆ 𝑡 } ) = ( 𝑠 ∈ 𝒫 𝑉 ↦ ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑠 ⊆ 𝑡 } ) | |
| 23 | sseq1 | ⊢ ( 𝑠 = 𝑆 → ( 𝑠 ⊆ 𝑡 ↔ 𝑆 ⊆ 𝑡 ) ) | |
| 24 | 23 | rabbidv | ⊢ ( 𝑠 = 𝑆 → { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑠 ⊆ 𝑡 } = { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } ) |
| 25 | 24 | inteqd | ⊢ ( 𝑠 = 𝑆 → ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑠 ⊆ 𝑡 } = ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } ) |
| 26 | simpr | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ⊆ 𝑉 ) | |
| 27 | 15 | elpw2 | ⊢ ( 𝑆 ∈ 𝒫 𝑉 ↔ 𝑆 ⊆ 𝑉 ) |
| 28 | 26 27 | sylibr | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ∈ 𝒫 𝑉 ) |
| 29 | assaring | ⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ Ring ) | |
| 30 | 2 | subrgid | ⊢ ( 𝑊 ∈ Ring → 𝑉 ∈ ( SubRing ‘ 𝑊 ) ) |
| 31 | 29 30 | syl | ⊢ ( 𝑊 ∈ AssAlg → 𝑉 ∈ ( SubRing ‘ 𝑊 ) ) |
| 32 | assalmod | ⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod ) | |
| 33 | 2 3 | lss1 | ⊢ ( 𝑊 ∈ LMod → 𝑉 ∈ 𝐿 ) |
| 34 | 32 33 | syl | ⊢ ( 𝑊 ∈ AssAlg → 𝑉 ∈ 𝐿 ) |
| 35 | 31 34 | elind | ⊢ ( 𝑊 ∈ AssAlg → 𝑉 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ) |
| 36 | sseq2 | ⊢ ( 𝑡 = 𝑉 → ( 𝑆 ⊆ 𝑡 ↔ 𝑆 ⊆ 𝑉 ) ) | |
| 37 | 36 | rspcev | ⊢ ( ( 𝑉 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∧ 𝑆 ⊆ 𝑉 ) → ∃ 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) 𝑆 ⊆ 𝑡 ) |
| 38 | 35 37 | sylan | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ∃ 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) 𝑆 ⊆ 𝑡 ) |
| 39 | intexrab | ⊢ ( ∃ 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) 𝑆 ⊆ 𝑡 ↔ ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } ∈ V ) | |
| 40 | 38 39 | sylib | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } ∈ V ) |
| 41 | 22 25 28 40 | fvmptd3 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ( ( 𝑠 ∈ 𝒫 𝑉 ↦ ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑠 ⊆ 𝑡 } ) ‘ 𝑆 ) = ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } ) |
| 42 | 21 41 | eqtrd | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐴 ‘ 𝑆 ) = ∩ { 𝑡 ∈ ( ( SubRing ‘ 𝑊 ) ∩ 𝐿 ) ∣ 𝑆 ⊆ 𝑡 } ) |