This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cosine of a real number in terms of the exponential function. (Contributed by NM, 30-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recosval | ⊢ ( 𝐴 ∈ ℝ → ( cos ‘ 𝐴 ) = ( ℜ ‘ ( exp ‘ ( i · 𝐴 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn | ⊢ i ∈ ℂ | |
| 2 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 3 | cjmul | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ∗ ‘ ( i · 𝐴 ) ) = ( ( ∗ ‘ i ) · ( ∗ ‘ 𝐴 ) ) ) | |
| 4 | 1 2 3 | sylancr | ⊢ ( 𝐴 ∈ ℝ → ( ∗ ‘ ( i · 𝐴 ) ) = ( ( ∗ ‘ i ) · ( ∗ ‘ 𝐴 ) ) ) |
| 5 | cji | ⊢ ( ∗ ‘ i ) = - i | |
| 6 | 5 | oveq1i | ⊢ ( ( ∗ ‘ i ) · ( ∗ ‘ 𝐴 ) ) = ( - i · ( ∗ ‘ 𝐴 ) ) |
| 7 | cjre | ⊢ ( 𝐴 ∈ ℝ → ( ∗ ‘ 𝐴 ) = 𝐴 ) | |
| 8 | 7 | oveq2d | ⊢ ( 𝐴 ∈ ℝ → ( - i · ( ∗ ‘ 𝐴 ) ) = ( - i · 𝐴 ) ) |
| 9 | 6 8 | eqtrid | ⊢ ( 𝐴 ∈ ℝ → ( ( ∗ ‘ i ) · ( ∗ ‘ 𝐴 ) ) = ( - i · 𝐴 ) ) |
| 10 | 4 9 | eqtrd | ⊢ ( 𝐴 ∈ ℝ → ( ∗ ‘ ( i · 𝐴 ) ) = ( - i · 𝐴 ) ) |
| 11 | 10 | fveq2d | ⊢ ( 𝐴 ∈ ℝ → ( exp ‘ ( ∗ ‘ ( i · 𝐴 ) ) ) = ( exp ‘ ( - i · 𝐴 ) ) ) |
| 12 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) | |
| 13 | 1 2 12 | sylancr | ⊢ ( 𝐴 ∈ ℝ → ( i · 𝐴 ) ∈ ℂ ) |
| 14 | efcj | ⊢ ( ( i · 𝐴 ) ∈ ℂ → ( exp ‘ ( ∗ ‘ ( i · 𝐴 ) ) ) = ( ∗ ‘ ( exp ‘ ( i · 𝐴 ) ) ) ) | |
| 15 | 13 14 | syl | ⊢ ( 𝐴 ∈ ℝ → ( exp ‘ ( ∗ ‘ ( i · 𝐴 ) ) ) = ( ∗ ‘ ( exp ‘ ( i · 𝐴 ) ) ) ) |
| 16 | 11 15 | eqtr3d | ⊢ ( 𝐴 ∈ ℝ → ( exp ‘ ( - i · 𝐴 ) ) = ( ∗ ‘ ( exp ‘ ( i · 𝐴 ) ) ) ) |
| 17 | 16 | oveq2d | ⊢ ( 𝐴 ∈ ℝ → ( ( exp ‘ ( i · 𝐴 ) ) + ( exp ‘ ( - i · 𝐴 ) ) ) = ( ( exp ‘ ( i · 𝐴 ) ) + ( ∗ ‘ ( exp ‘ ( i · 𝐴 ) ) ) ) ) |
| 18 | 17 | oveq1d | ⊢ ( 𝐴 ∈ ℝ → ( ( ( exp ‘ ( i · 𝐴 ) ) + ( exp ‘ ( - i · 𝐴 ) ) ) / 2 ) = ( ( ( exp ‘ ( i · 𝐴 ) ) + ( ∗ ‘ ( exp ‘ ( i · 𝐴 ) ) ) ) / 2 ) ) |
| 19 | cosval | ⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) = ( ( ( exp ‘ ( i · 𝐴 ) ) + ( exp ‘ ( - i · 𝐴 ) ) ) / 2 ) ) | |
| 20 | 2 19 | syl | ⊢ ( 𝐴 ∈ ℝ → ( cos ‘ 𝐴 ) = ( ( ( exp ‘ ( i · 𝐴 ) ) + ( exp ‘ ( - i · 𝐴 ) ) ) / 2 ) ) |
| 21 | efcl | ⊢ ( ( i · 𝐴 ) ∈ ℂ → ( exp ‘ ( i · 𝐴 ) ) ∈ ℂ ) | |
| 22 | reval | ⊢ ( ( exp ‘ ( i · 𝐴 ) ) ∈ ℂ → ( ℜ ‘ ( exp ‘ ( i · 𝐴 ) ) ) = ( ( ( exp ‘ ( i · 𝐴 ) ) + ( ∗ ‘ ( exp ‘ ( i · 𝐴 ) ) ) ) / 2 ) ) | |
| 23 | 13 21 22 | 3syl | ⊢ ( 𝐴 ∈ ℝ → ( ℜ ‘ ( exp ‘ ( i · 𝐴 ) ) ) = ( ( ( exp ‘ ( i · 𝐴 ) ) + ( ∗ ‘ ( exp ‘ ( i · 𝐴 ) ) ) ) / 2 ) ) |
| 24 | 18 20 23 | 3eqtr4d | ⊢ ( 𝐴 ∈ ℝ → ( cos ‘ 𝐴 ) = ( ℜ ‘ ( exp ‘ ( i · 𝐴 ) ) ) ) |