This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the argument of a complex number with nonnegative real part. (Contributed by Mario Carneiro, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | argrege0 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | logcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 3 | 2 | imcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 4 | simp3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → 0 ≤ ( ℜ ‘ 𝐴 ) ) | |
| 5 | simp1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → 𝐴 ∈ ℂ ) | |
| 6 | 5 | abscld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 7 | 6 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 8 | 7 | mul01d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ 𝐴 ) · 0 ) = 0 ) |
| 9 | absrpcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ+ ) | |
| 10 | 9 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( abs ‘ 𝐴 ) ∈ ℝ+ ) |
| 11 | 10 | rpne0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( abs ‘ 𝐴 ) ≠ 0 ) |
| 12 | 5 7 11 | divcld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( 𝐴 / ( abs ‘ 𝐴 ) ) ∈ ℂ ) |
| 13 | 6 12 | remul2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ ( ( abs ‘ 𝐴 ) · ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) = ( ( abs ‘ 𝐴 ) · ( ℜ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) ) |
| 14 | 5 7 11 | divcan2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ 𝐴 ) · ( 𝐴 / ( abs ‘ 𝐴 ) ) ) = 𝐴 ) |
| 15 | 14 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ ( ( abs ‘ 𝐴 ) · ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) = ( ℜ ‘ 𝐴 ) ) |
| 16 | 13 15 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ 𝐴 ) · ( ℜ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) = ( ℜ ‘ 𝐴 ) ) |
| 17 | 4 8 16 | 3brtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ 𝐴 ) · 0 ) ≤ ( ( abs ‘ 𝐴 ) · ( ℜ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) ) |
| 18 | 0re | ⊢ 0 ∈ ℝ | |
| 19 | 18 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → 0 ∈ ℝ ) |
| 20 | 12 | recld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 21 | 19 20 10 | lemul2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( 0 ≤ ( ℜ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ↔ ( ( abs ‘ 𝐴 ) · 0 ) ≤ ( ( abs ‘ 𝐴 ) · ( ℜ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) ) ) |
| 22 | 17 21 | mpbird | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → 0 ≤ ( ℜ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) |
| 23 | efiarg | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( 𝐴 / ( abs ‘ 𝐴 ) ) ) | |
| 24 | 23 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( 𝐴 / ( abs ‘ 𝐴 ) ) ) |
| 25 | 24 | fveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) = ( ℜ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) |
| 26 | 22 25 | breqtrrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → 0 ≤ ( ℜ ‘ ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) |
| 27 | recosval | ⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ → ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ℜ ‘ ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) | |
| 28 | 3 27 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ℜ ‘ ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) |
| 29 | 26 28 | breqtrrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → 0 ≤ ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 30 | halfpire | ⊢ ( π / 2 ) ∈ ℝ | |
| 31 | pirp | ⊢ π ∈ ℝ+ | |
| 32 | rphalfcl | ⊢ ( π ∈ ℝ+ → ( π / 2 ) ∈ ℝ+ ) | |
| 33 | rpge0 | ⊢ ( ( π / 2 ) ∈ ℝ+ → 0 ≤ ( π / 2 ) ) | |
| 34 | 31 32 33 | mp2b | ⊢ 0 ≤ ( π / 2 ) |
| 35 | pire | ⊢ π ∈ ℝ | |
| 36 | rphalflt | ⊢ ( π ∈ ℝ+ → ( π / 2 ) < π ) | |
| 37 | 31 36 | ax-mp | ⊢ ( π / 2 ) < π |
| 38 | 30 35 37 | ltleii | ⊢ ( π / 2 ) ≤ π |
| 39 | 18 35 | elicc2i | ⊢ ( ( π / 2 ) ∈ ( 0 [,] π ) ↔ ( ( π / 2 ) ∈ ℝ ∧ 0 ≤ ( π / 2 ) ∧ ( π / 2 ) ≤ π ) ) |
| 40 | 30 34 38 39 | mpbir3an | ⊢ ( π / 2 ) ∈ ( 0 [,] π ) |
| 41 | 3 | recnd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ) |
| 42 | 41 | abscld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 43 | 41 | absge0d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → 0 ≤ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 44 | logimcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) | |
| 45 | 44 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) |
| 46 | 45 | simpld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 47 | 35 | renegcli | ⊢ - π ∈ ℝ |
| 48 | ltle | ⊢ ( ( - π ∈ ℝ ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) → - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | |
| 49 | 47 3 48 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) → - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 50 | 46 49 | mpd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 51 | 45 | simprd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) |
| 52 | absle | ⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ π ∈ ℝ ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ↔ ( - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) ) | |
| 53 | 3 35 52 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ↔ ( - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) ) |
| 54 | 50 51 53 | mpbir2and | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ) |
| 55 | 18 35 | elicc2i | ⊢ ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ( 0 [,] π ) ↔ ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∧ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ) ) |
| 56 | 42 43 54 55 | syl3anbrc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ( 0 [,] π ) ) |
| 57 | cosord | ⊢ ( ( ( π / 2 ) ∈ ( 0 [,] π ) ∧ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ( 0 [,] π ) ) → ( ( π / 2 ) < ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ↔ ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) < ( cos ‘ ( π / 2 ) ) ) ) | |
| 58 | 40 56 57 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( π / 2 ) < ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ↔ ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) < ( cos ‘ ( π / 2 ) ) ) ) |
| 59 | fveq2 | ⊢ ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ℑ ‘ ( log ‘ 𝐴 ) ) → ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | |
| 60 | 59 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ℑ ‘ ( log ‘ 𝐴 ) ) → ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
| 61 | cosneg | ⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ → ( cos ‘ - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) | |
| 62 | 41 61 | syl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( cos ‘ - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 63 | fveqeq2 | ⊢ ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = - ( ℑ ‘ ( log ‘ 𝐴 ) ) → ( ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ↔ ( cos ‘ - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) | |
| 64 | 62 63 | syl5ibrcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = - ( ℑ ‘ ( log ‘ 𝐴 ) ) → ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
| 65 | 3 | absord | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ℑ ‘ ( log ‘ 𝐴 ) ) ∨ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 66 | 60 64 65 | mpjaod | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 67 | coshalfpi | ⊢ ( cos ‘ ( π / 2 ) ) = 0 | |
| 68 | 67 | a1i | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( cos ‘ ( π / 2 ) ) = 0 ) |
| 69 | 66 68 | breq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) < ( cos ‘ ( π / 2 ) ) ↔ ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < 0 ) ) |
| 70 | 58 69 | bitrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( π / 2 ) < ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ↔ ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < 0 ) ) |
| 71 | 70 | notbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ¬ ( π / 2 ) < ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ↔ ¬ ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < 0 ) ) |
| 72 | lenlt | ⊢ ( ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℝ ∧ ( π / 2 ) ∈ ℝ ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ ( π / 2 ) ↔ ¬ ( π / 2 ) < ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) | |
| 73 | 42 30 72 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ ( π / 2 ) ↔ ¬ ( π / 2 ) < ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
| 74 | 3 | recoscld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 75 | lenlt | ⊢ ( ( 0 ∈ ℝ ∧ ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℝ ) → ( 0 ≤ ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ↔ ¬ ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < 0 ) ) | |
| 76 | 18 74 75 | sylancr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( 0 ≤ ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ↔ ¬ ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < 0 ) ) |
| 77 | 71 73 76 | 3bitr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ ( π / 2 ) ↔ 0 ≤ ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
| 78 | 29 77 | mpbird | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ ( π / 2 ) ) |
| 79 | absle | ⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ ( π / 2 ) ∈ ℝ ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ ( π / 2 ) ↔ ( - ( π / 2 ) ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ ( π / 2 ) ) ) ) | |
| 80 | 3 30 79 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ ( π / 2 ) ↔ ( - ( π / 2 ) ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ ( π / 2 ) ) ) ) |
| 81 | 78 80 | mpbid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( - ( π / 2 ) ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ ( π / 2 ) ) ) |
| 82 | 81 | simpld | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → - ( π / 2 ) ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 83 | 81 | simprd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ ( π / 2 ) ) |
| 84 | 30 | renegcli | ⊢ - ( π / 2 ) ∈ ℝ |
| 85 | 84 30 | elicc2i | ⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↔ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ - ( π / 2 ) ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ ( π / 2 ) ) ) |
| 86 | 3 82 83 85 | syl3anbrc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 0 ≤ ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |