This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dfac11 . Transfinite induction, close over z . (Contributed by Stefan O'Rear, 20-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | aomclem6.b | ⊢ 𝐵 = { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ ( 𝑅1 ‘ ∪ dom 𝑧 ) ( ( 𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎 ) ∧ ∀ 𝑑 ∈ ( 𝑅1 ‘ ∪ dom 𝑧 ) ( 𝑑 ( 𝑧 ‘ ∪ dom 𝑧 ) 𝑐 → ( 𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏 ) ) ) } | |
| aomclem6.c | ⊢ 𝐶 = ( 𝑎 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑎 ) , ( 𝑅1 ‘ dom 𝑧 ) , 𝐵 ) ) | ||
| aomclem6.d | ⊢ 𝐷 = recs ( ( 𝑎 ∈ V ↦ ( 𝐶 ‘ ( ( 𝑅1 ‘ dom 𝑧 ) ∖ ran 𝑎 ) ) ) ) | ||
| aomclem6.e | ⊢ 𝐸 = { 〈 𝑎 , 𝑏 〉 ∣ ∩ ( ◡ 𝐷 “ { 𝑎 } ) ∈ ∩ ( ◡ 𝐷 “ { 𝑏 } ) } | ||
| aomclem6.f | ⊢ 𝐹 = { 〈 𝑎 , 𝑏 〉 ∣ ( ( rank ‘ 𝑎 ) E ( rank ‘ 𝑏 ) ∨ ( ( rank ‘ 𝑎 ) = ( rank ‘ 𝑏 ) ∧ 𝑎 ( 𝑧 ‘ suc ( rank ‘ 𝑎 ) ) 𝑏 ) ) } | ||
| aomclem6.g | ⊢ 𝐺 = ( if ( dom 𝑧 = ∪ dom 𝑧 , 𝐹 , 𝐸 ) ∩ ( ( 𝑅1 ‘ dom 𝑧 ) × ( 𝑅1 ‘ dom 𝑧 ) ) ) | ||
| aomclem6.h | ⊢ 𝐻 = recs ( ( 𝑧 ∈ V ↦ 𝐺 ) ) | ||
| aomclem6.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | ||
| aomclem6.y | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ( 𝑎 ≠ ∅ → ( 𝑦 ‘ 𝑎 ) ∈ ( ( 𝒫 𝑎 ∩ Fin ) ∖ { ∅ } ) ) ) | ||
| Assertion | aomclem6 | ⊢ ( 𝜑 → ( 𝐻 ‘ 𝐴 ) We ( 𝑅1 ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aomclem6.b | ⊢ 𝐵 = { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ ( 𝑅1 ‘ ∪ dom 𝑧 ) ( ( 𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎 ) ∧ ∀ 𝑑 ∈ ( 𝑅1 ‘ ∪ dom 𝑧 ) ( 𝑑 ( 𝑧 ‘ ∪ dom 𝑧 ) 𝑐 → ( 𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏 ) ) ) } | |
| 2 | aomclem6.c | ⊢ 𝐶 = ( 𝑎 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑎 ) , ( 𝑅1 ‘ dom 𝑧 ) , 𝐵 ) ) | |
| 3 | aomclem6.d | ⊢ 𝐷 = recs ( ( 𝑎 ∈ V ↦ ( 𝐶 ‘ ( ( 𝑅1 ‘ dom 𝑧 ) ∖ ran 𝑎 ) ) ) ) | |
| 4 | aomclem6.e | ⊢ 𝐸 = { 〈 𝑎 , 𝑏 〉 ∣ ∩ ( ◡ 𝐷 “ { 𝑎 } ) ∈ ∩ ( ◡ 𝐷 “ { 𝑏 } ) } | |
| 5 | aomclem6.f | ⊢ 𝐹 = { 〈 𝑎 , 𝑏 〉 ∣ ( ( rank ‘ 𝑎 ) E ( rank ‘ 𝑏 ) ∨ ( ( rank ‘ 𝑎 ) = ( rank ‘ 𝑏 ) ∧ 𝑎 ( 𝑧 ‘ suc ( rank ‘ 𝑎 ) ) 𝑏 ) ) } | |
| 6 | aomclem6.g | ⊢ 𝐺 = ( if ( dom 𝑧 = ∪ dom 𝑧 , 𝐹 , 𝐸 ) ∩ ( ( 𝑅1 ‘ dom 𝑧 ) × ( 𝑅1 ‘ dom 𝑧 ) ) ) | |
| 7 | aomclem6.h | ⊢ 𝐻 = recs ( ( 𝑧 ∈ V ↦ 𝐺 ) ) | |
| 8 | aomclem6.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 9 | aomclem6.y | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ( 𝑎 ≠ ∅ → ( 𝑦 ‘ 𝑎 ) ∈ ( ( 𝒫 𝑎 ∩ Fin ) ∖ { ∅ } ) ) ) | |
| 10 | ssid | ⊢ 𝐴 ⊆ 𝐴 | |
| 11 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ⊆ 𝐴 ) → 𝐴 ∈ On ) |
| 12 | sseq1 | ⊢ ( 𝑐 = 𝑑 → ( 𝑐 ⊆ 𝐴 ↔ 𝑑 ⊆ 𝐴 ) ) | |
| 13 | 12 | anbi2d | ⊢ ( 𝑐 = 𝑑 → ( ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) ↔ ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) ) ) |
| 14 | fveq2 | ⊢ ( 𝑐 = 𝑑 → ( 𝐻 ‘ 𝑐 ) = ( 𝐻 ‘ 𝑑 ) ) | |
| 15 | fveq2 | ⊢ ( 𝑐 = 𝑑 → ( 𝑅1 ‘ 𝑐 ) = ( 𝑅1 ‘ 𝑑 ) ) | |
| 16 | 14 15 | weeq12d | ⊢ ( 𝑐 = 𝑑 → ( ( 𝐻 ‘ 𝑐 ) We ( 𝑅1 ‘ 𝑐 ) ↔ ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ) |
| 17 | 13 16 | imbi12d | ⊢ ( 𝑐 = 𝑑 → ( ( ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑐 ) We ( 𝑅1 ‘ 𝑐 ) ) ↔ ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ) ) |
| 18 | sseq1 | ⊢ ( 𝑐 = 𝐴 → ( 𝑐 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴 ) ) | |
| 19 | 18 | anbi2d | ⊢ ( 𝑐 = 𝐴 → ( ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) ↔ ( 𝜑 ∧ 𝐴 ⊆ 𝐴 ) ) ) |
| 20 | fveq2 | ⊢ ( 𝑐 = 𝐴 → ( 𝐻 ‘ 𝑐 ) = ( 𝐻 ‘ 𝐴 ) ) | |
| 21 | fveq2 | ⊢ ( 𝑐 = 𝐴 → ( 𝑅1 ‘ 𝑐 ) = ( 𝑅1 ‘ 𝐴 ) ) | |
| 22 | 20 21 | weeq12d | ⊢ ( 𝑐 = 𝐴 → ( ( 𝐻 ‘ 𝑐 ) We ( 𝑅1 ‘ 𝑐 ) ↔ ( 𝐻 ‘ 𝐴 ) We ( 𝑅1 ‘ 𝐴 ) ) ) |
| 23 | 19 22 | imbi12d | ⊢ ( 𝑐 = 𝐴 → ( ( ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑐 ) We ( 𝑅1 ‘ 𝑐 ) ) ↔ ( ( 𝜑 ∧ 𝐴 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝐴 ) We ( 𝑅1 ‘ 𝐴 ) ) ) ) |
| 24 | dmeq | ⊢ ( 𝑧 = ( 𝐻 ↾ 𝑐 ) → dom 𝑧 = dom ( 𝐻 ↾ 𝑐 ) ) | |
| 25 | 24 | adantl | ⊢ ( ( ( 𝑐 ∈ On ∧ ∀ 𝑑 ∈ 𝑐 ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ∧ ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) ) ∧ 𝑧 = ( 𝐻 ↾ 𝑐 ) ) → dom 𝑧 = dom ( 𝐻 ↾ 𝑐 ) ) |
| 26 | simpl1 | ⊢ ( ( ( 𝑐 ∈ On ∧ ∀ 𝑑 ∈ 𝑐 ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ∧ ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) ) ∧ 𝑧 = ( 𝐻 ↾ 𝑐 ) ) → 𝑐 ∈ On ) | |
| 27 | onss | ⊢ ( 𝑐 ∈ On → 𝑐 ⊆ On ) | |
| 28 | 7 | tfr1 | ⊢ 𝐻 Fn On |
| 29 | fnssres | ⊢ ( ( 𝐻 Fn On ∧ 𝑐 ⊆ On ) → ( 𝐻 ↾ 𝑐 ) Fn 𝑐 ) | |
| 30 | 28 29 | mpan | ⊢ ( 𝑐 ⊆ On → ( 𝐻 ↾ 𝑐 ) Fn 𝑐 ) |
| 31 | fndm | ⊢ ( ( 𝐻 ↾ 𝑐 ) Fn 𝑐 → dom ( 𝐻 ↾ 𝑐 ) = 𝑐 ) | |
| 32 | 26 27 30 31 | 4syl | ⊢ ( ( ( 𝑐 ∈ On ∧ ∀ 𝑑 ∈ 𝑐 ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ∧ ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) ) ∧ 𝑧 = ( 𝐻 ↾ 𝑐 ) ) → dom ( 𝐻 ↾ 𝑐 ) = 𝑐 ) |
| 33 | 25 32 | eqtrd | ⊢ ( ( ( 𝑐 ∈ On ∧ ∀ 𝑑 ∈ 𝑐 ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ∧ ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) ) ∧ 𝑧 = ( 𝐻 ↾ 𝑐 ) ) → dom 𝑧 = 𝑐 ) |
| 34 | 33 26 | eqeltrd | ⊢ ( ( ( 𝑐 ∈ On ∧ ∀ 𝑑 ∈ 𝑐 ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ∧ ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) ) ∧ 𝑧 = ( 𝐻 ↾ 𝑐 ) ) → dom 𝑧 ∈ On ) |
| 35 | 33 | eleq2d | ⊢ ( ( ( 𝑐 ∈ On ∧ ∀ 𝑑 ∈ 𝑐 ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ∧ ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) ) ∧ 𝑧 = ( 𝐻 ↾ 𝑐 ) ) → ( 𝑎 ∈ dom 𝑧 ↔ 𝑎 ∈ 𝑐 ) ) |
| 36 | 35 | biimpa | ⊢ ( ( ( ( 𝑐 ∈ On ∧ ∀ 𝑑 ∈ 𝑐 ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ∧ ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) ) ∧ 𝑧 = ( 𝐻 ↾ 𝑐 ) ) ∧ 𝑎 ∈ dom 𝑧 ) → 𝑎 ∈ 𝑐 ) |
| 37 | simpll2 | ⊢ ( ( ( ( 𝑐 ∈ On ∧ ∀ 𝑑 ∈ 𝑐 ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ∧ ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) ) ∧ 𝑧 = ( 𝐻 ↾ 𝑐 ) ) ∧ 𝑎 ∈ dom 𝑧 ) → ∀ 𝑑 ∈ 𝑐 ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ) | |
| 38 | simpl3l | ⊢ ( ( ( 𝑐 ∈ On ∧ ∀ 𝑑 ∈ 𝑐 ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ∧ ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) ) ∧ 𝑧 = ( 𝐻 ↾ 𝑐 ) ) → 𝜑 ) | |
| 39 | 38 | adantr | ⊢ ( ( ( ( 𝑐 ∈ On ∧ ∀ 𝑑 ∈ 𝑐 ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ∧ ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) ) ∧ 𝑧 = ( 𝐻 ↾ 𝑐 ) ) ∧ 𝑎 ∈ dom 𝑧 ) → 𝜑 ) |
| 40 | onelss | ⊢ ( dom 𝑧 ∈ On → ( 𝑎 ∈ dom 𝑧 → 𝑎 ⊆ dom 𝑧 ) ) | |
| 41 | 34 40 | syl | ⊢ ( ( ( 𝑐 ∈ On ∧ ∀ 𝑑 ∈ 𝑐 ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ∧ ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) ) ∧ 𝑧 = ( 𝐻 ↾ 𝑐 ) ) → ( 𝑎 ∈ dom 𝑧 → 𝑎 ⊆ dom 𝑧 ) ) |
| 42 | 41 | imp | ⊢ ( ( ( ( 𝑐 ∈ On ∧ ∀ 𝑑 ∈ 𝑐 ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ∧ ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) ) ∧ 𝑧 = ( 𝐻 ↾ 𝑐 ) ) ∧ 𝑎 ∈ dom 𝑧 ) → 𝑎 ⊆ dom 𝑧 ) |
| 43 | simpl3r | ⊢ ( ( ( 𝑐 ∈ On ∧ ∀ 𝑑 ∈ 𝑐 ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ∧ ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) ) ∧ 𝑧 = ( 𝐻 ↾ 𝑐 ) ) → 𝑐 ⊆ 𝐴 ) | |
| 44 | 33 43 | eqsstrd | ⊢ ( ( ( 𝑐 ∈ On ∧ ∀ 𝑑 ∈ 𝑐 ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ∧ ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) ) ∧ 𝑧 = ( 𝐻 ↾ 𝑐 ) ) → dom 𝑧 ⊆ 𝐴 ) |
| 45 | 44 | adantr | ⊢ ( ( ( ( 𝑐 ∈ On ∧ ∀ 𝑑 ∈ 𝑐 ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ∧ ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) ) ∧ 𝑧 = ( 𝐻 ↾ 𝑐 ) ) ∧ 𝑎 ∈ dom 𝑧 ) → dom 𝑧 ⊆ 𝐴 ) |
| 46 | 42 45 | sstrd | ⊢ ( ( ( ( 𝑐 ∈ On ∧ ∀ 𝑑 ∈ 𝑐 ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ∧ ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) ) ∧ 𝑧 = ( 𝐻 ↾ 𝑐 ) ) ∧ 𝑎 ∈ dom 𝑧 ) → 𝑎 ⊆ 𝐴 ) |
| 47 | sseq1 | ⊢ ( 𝑑 = 𝑎 → ( 𝑑 ⊆ 𝐴 ↔ 𝑎 ⊆ 𝐴 ) ) | |
| 48 | 47 | anbi2d | ⊢ ( 𝑑 = 𝑎 → ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) ↔ ( 𝜑 ∧ 𝑎 ⊆ 𝐴 ) ) ) |
| 49 | fveq2 | ⊢ ( 𝑑 = 𝑎 → ( 𝐻 ‘ 𝑑 ) = ( 𝐻 ‘ 𝑎 ) ) | |
| 50 | fveq2 | ⊢ ( 𝑑 = 𝑎 → ( 𝑅1 ‘ 𝑑 ) = ( 𝑅1 ‘ 𝑎 ) ) | |
| 51 | 49 50 | weeq12d | ⊢ ( 𝑑 = 𝑎 → ( ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ↔ ( 𝐻 ‘ 𝑎 ) We ( 𝑅1 ‘ 𝑎 ) ) ) |
| 52 | 48 51 | imbi12d | ⊢ ( 𝑑 = 𝑎 → ( ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ↔ ( ( 𝜑 ∧ 𝑎 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑎 ) We ( 𝑅1 ‘ 𝑎 ) ) ) ) |
| 53 | 52 | rspcva | ⊢ ( ( 𝑎 ∈ 𝑐 ∧ ∀ 𝑑 ∈ 𝑐 ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ) → ( ( 𝜑 ∧ 𝑎 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑎 ) We ( 𝑅1 ‘ 𝑎 ) ) ) |
| 54 | 53 | imp | ⊢ ( ( ( 𝑎 ∈ 𝑐 ∧ ∀ 𝑑 ∈ 𝑐 ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ) ∧ ( 𝜑 ∧ 𝑎 ⊆ 𝐴 ) ) → ( 𝐻 ‘ 𝑎 ) We ( 𝑅1 ‘ 𝑎 ) ) |
| 55 | 36 37 39 46 54 | syl22anc | ⊢ ( ( ( ( 𝑐 ∈ On ∧ ∀ 𝑑 ∈ 𝑐 ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ∧ ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) ) ∧ 𝑧 = ( 𝐻 ↾ 𝑐 ) ) ∧ 𝑎 ∈ dom 𝑧 ) → ( 𝐻 ‘ 𝑎 ) We ( 𝑅1 ‘ 𝑎 ) ) |
| 56 | fveq1 | ⊢ ( 𝑧 = ( 𝐻 ↾ 𝑐 ) → ( 𝑧 ‘ 𝑎 ) = ( ( 𝐻 ↾ 𝑐 ) ‘ 𝑎 ) ) | |
| 57 | 56 | ad2antlr | ⊢ ( ( ( ( 𝑐 ∈ On ∧ ∀ 𝑑 ∈ 𝑐 ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ∧ ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) ) ∧ 𝑧 = ( 𝐻 ↾ 𝑐 ) ) ∧ 𝑎 ∈ dom 𝑧 ) → ( 𝑧 ‘ 𝑎 ) = ( ( 𝐻 ↾ 𝑐 ) ‘ 𝑎 ) ) |
| 58 | fvres | ⊢ ( 𝑎 ∈ 𝑐 → ( ( 𝐻 ↾ 𝑐 ) ‘ 𝑎 ) = ( 𝐻 ‘ 𝑎 ) ) | |
| 59 | 36 58 | syl | ⊢ ( ( ( ( 𝑐 ∈ On ∧ ∀ 𝑑 ∈ 𝑐 ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ∧ ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) ) ∧ 𝑧 = ( 𝐻 ↾ 𝑐 ) ) ∧ 𝑎 ∈ dom 𝑧 ) → ( ( 𝐻 ↾ 𝑐 ) ‘ 𝑎 ) = ( 𝐻 ‘ 𝑎 ) ) |
| 60 | 57 59 | eqtrd | ⊢ ( ( ( ( 𝑐 ∈ On ∧ ∀ 𝑑 ∈ 𝑐 ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ∧ ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) ) ∧ 𝑧 = ( 𝐻 ↾ 𝑐 ) ) ∧ 𝑎 ∈ dom 𝑧 ) → ( 𝑧 ‘ 𝑎 ) = ( 𝐻 ‘ 𝑎 ) ) |
| 61 | weeq1 | ⊢ ( ( 𝑧 ‘ 𝑎 ) = ( 𝐻 ‘ 𝑎 ) → ( ( 𝑧 ‘ 𝑎 ) We ( 𝑅1 ‘ 𝑎 ) ↔ ( 𝐻 ‘ 𝑎 ) We ( 𝑅1 ‘ 𝑎 ) ) ) | |
| 62 | 60 61 | syl | ⊢ ( ( ( ( 𝑐 ∈ On ∧ ∀ 𝑑 ∈ 𝑐 ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ∧ ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) ) ∧ 𝑧 = ( 𝐻 ↾ 𝑐 ) ) ∧ 𝑎 ∈ dom 𝑧 ) → ( ( 𝑧 ‘ 𝑎 ) We ( 𝑅1 ‘ 𝑎 ) ↔ ( 𝐻 ‘ 𝑎 ) We ( 𝑅1 ‘ 𝑎 ) ) ) |
| 63 | 55 62 | mpbird | ⊢ ( ( ( ( 𝑐 ∈ On ∧ ∀ 𝑑 ∈ 𝑐 ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ∧ ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) ) ∧ 𝑧 = ( 𝐻 ↾ 𝑐 ) ) ∧ 𝑎 ∈ dom 𝑧 ) → ( 𝑧 ‘ 𝑎 ) We ( 𝑅1 ‘ 𝑎 ) ) |
| 64 | 63 | ralrimiva | ⊢ ( ( ( 𝑐 ∈ On ∧ ∀ 𝑑 ∈ 𝑐 ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ∧ ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) ) ∧ 𝑧 = ( 𝐻 ↾ 𝑐 ) ) → ∀ 𝑎 ∈ dom 𝑧 ( 𝑧 ‘ 𝑎 ) We ( 𝑅1 ‘ 𝑎 ) ) |
| 65 | 38 8 | syl | ⊢ ( ( ( 𝑐 ∈ On ∧ ∀ 𝑑 ∈ 𝑐 ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ∧ ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) ) ∧ 𝑧 = ( 𝐻 ↾ 𝑐 ) ) → 𝐴 ∈ On ) |
| 66 | 38 9 | syl | ⊢ ( ( ( 𝑐 ∈ On ∧ ∀ 𝑑 ∈ 𝑐 ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ∧ ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) ) ∧ 𝑧 = ( 𝐻 ↾ 𝑐 ) ) → ∀ 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ( 𝑎 ≠ ∅ → ( 𝑦 ‘ 𝑎 ) ∈ ( ( 𝒫 𝑎 ∩ Fin ) ∖ { ∅ } ) ) ) |
| 67 | 1 2 3 4 5 6 34 64 65 44 66 | aomclem5 | ⊢ ( ( ( 𝑐 ∈ On ∧ ∀ 𝑑 ∈ 𝑐 ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ∧ ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) ) ∧ 𝑧 = ( 𝐻 ↾ 𝑐 ) ) → 𝐺 We ( 𝑅1 ‘ dom 𝑧 ) ) |
| 68 | 33 | fveq2d | ⊢ ( ( ( 𝑐 ∈ On ∧ ∀ 𝑑 ∈ 𝑐 ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ∧ ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) ) ∧ 𝑧 = ( 𝐻 ↾ 𝑐 ) ) → ( 𝑅1 ‘ dom 𝑧 ) = ( 𝑅1 ‘ 𝑐 ) ) |
| 69 | weeq2 | ⊢ ( ( 𝑅1 ‘ dom 𝑧 ) = ( 𝑅1 ‘ 𝑐 ) → ( 𝐺 We ( 𝑅1 ‘ dom 𝑧 ) ↔ 𝐺 We ( 𝑅1 ‘ 𝑐 ) ) ) | |
| 70 | 68 69 | syl | ⊢ ( ( ( 𝑐 ∈ On ∧ ∀ 𝑑 ∈ 𝑐 ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ∧ ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) ) ∧ 𝑧 = ( 𝐻 ↾ 𝑐 ) ) → ( 𝐺 We ( 𝑅1 ‘ dom 𝑧 ) ↔ 𝐺 We ( 𝑅1 ‘ 𝑐 ) ) ) |
| 71 | 67 70 | mpbid | ⊢ ( ( ( 𝑐 ∈ On ∧ ∀ 𝑑 ∈ 𝑐 ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ∧ ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) ) ∧ 𝑧 = ( 𝐻 ↾ 𝑐 ) ) → 𝐺 We ( 𝑅1 ‘ 𝑐 ) ) |
| 72 | 71 | ex | ⊢ ( ( 𝑐 ∈ On ∧ ∀ 𝑑 ∈ 𝑐 ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ∧ ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) ) → ( 𝑧 = ( 𝐻 ↾ 𝑐 ) → 𝐺 We ( 𝑅1 ‘ 𝑐 ) ) ) |
| 73 | 72 | alrimiv | ⊢ ( ( 𝑐 ∈ On ∧ ∀ 𝑑 ∈ 𝑐 ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ∧ ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) ) → ∀ 𝑧 ( 𝑧 = ( 𝐻 ↾ 𝑐 ) → 𝐺 We ( 𝑅1 ‘ 𝑐 ) ) ) |
| 74 | nfv | ⊢ Ⅎ 𝑑 ( 𝑧 = ( 𝐻 ↾ 𝑐 ) → 𝐺 We ( 𝑅1 ‘ 𝑐 ) ) | |
| 75 | nfv | ⊢ Ⅎ 𝑧 𝑑 = ( 𝐻 ↾ 𝑐 ) | |
| 76 | nfsbc1v | ⊢ Ⅎ 𝑧 [ 𝑑 / 𝑧 ] 𝐺 We ( 𝑅1 ‘ 𝑐 ) | |
| 77 | 75 76 | nfim | ⊢ Ⅎ 𝑧 ( 𝑑 = ( 𝐻 ↾ 𝑐 ) → [ 𝑑 / 𝑧 ] 𝐺 We ( 𝑅1 ‘ 𝑐 ) ) |
| 78 | eqeq1 | ⊢ ( 𝑧 = 𝑑 → ( 𝑧 = ( 𝐻 ↾ 𝑐 ) ↔ 𝑑 = ( 𝐻 ↾ 𝑐 ) ) ) | |
| 79 | sbceq1a | ⊢ ( 𝑧 = 𝑑 → ( 𝐺 We ( 𝑅1 ‘ 𝑐 ) ↔ [ 𝑑 / 𝑧 ] 𝐺 We ( 𝑅1 ‘ 𝑐 ) ) ) | |
| 80 | 78 79 | imbi12d | ⊢ ( 𝑧 = 𝑑 → ( ( 𝑧 = ( 𝐻 ↾ 𝑐 ) → 𝐺 We ( 𝑅1 ‘ 𝑐 ) ) ↔ ( 𝑑 = ( 𝐻 ↾ 𝑐 ) → [ 𝑑 / 𝑧 ] 𝐺 We ( 𝑅1 ‘ 𝑐 ) ) ) ) |
| 81 | 74 77 80 | cbvalv1 | ⊢ ( ∀ 𝑧 ( 𝑧 = ( 𝐻 ↾ 𝑐 ) → 𝐺 We ( 𝑅1 ‘ 𝑐 ) ) ↔ ∀ 𝑑 ( 𝑑 = ( 𝐻 ↾ 𝑐 ) → [ 𝑑 / 𝑧 ] 𝐺 We ( 𝑅1 ‘ 𝑐 ) ) ) |
| 82 | 73 81 | sylib | ⊢ ( ( 𝑐 ∈ On ∧ ∀ 𝑑 ∈ 𝑐 ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ∧ ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) ) → ∀ 𝑑 ( 𝑑 = ( 𝐻 ↾ 𝑐 ) → [ 𝑑 / 𝑧 ] 𝐺 We ( 𝑅1 ‘ 𝑐 ) ) ) |
| 83 | nfsbc1v | ⊢ Ⅎ 𝑑 [ ( 𝐻 ↾ 𝑐 ) / 𝑑 ] [ 𝑑 / 𝑧 ] 𝐺 We ( 𝑅1 ‘ 𝑐 ) | |
| 84 | fnfun | ⊢ ( 𝐻 Fn On → Fun 𝐻 ) | |
| 85 | 28 84 | ax-mp | ⊢ Fun 𝐻 |
| 86 | vex | ⊢ 𝑐 ∈ V | |
| 87 | resfunexg | ⊢ ( ( Fun 𝐻 ∧ 𝑐 ∈ V ) → ( 𝐻 ↾ 𝑐 ) ∈ V ) | |
| 88 | 85 86 87 | mp2an | ⊢ ( 𝐻 ↾ 𝑐 ) ∈ V |
| 89 | sbceq1a | ⊢ ( 𝑑 = ( 𝐻 ↾ 𝑐 ) → ( [ 𝑑 / 𝑧 ] 𝐺 We ( 𝑅1 ‘ 𝑐 ) ↔ [ ( 𝐻 ↾ 𝑐 ) / 𝑑 ] [ 𝑑 / 𝑧 ] 𝐺 We ( 𝑅1 ‘ 𝑐 ) ) ) | |
| 90 | 83 88 89 | ceqsal | ⊢ ( ∀ 𝑑 ( 𝑑 = ( 𝐻 ↾ 𝑐 ) → [ 𝑑 / 𝑧 ] 𝐺 We ( 𝑅1 ‘ 𝑐 ) ) ↔ [ ( 𝐻 ↾ 𝑐 ) / 𝑑 ] [ 𝑑 / 𝑧 ] 𝐺 We ( 𝑅1 ‘ 𝑐 ) ) |
| 91 | 82 90 | sylib | ⊢ ( ( 𝑐 ∈ On ∧ ∀ 𝑑 ∈ 𝑐 ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ∧ ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) ) → [ ( 𝐻 ↾ 𝑐 ) / 𝑑 ] [ 𝑑 / 𝑧 ] 𝐺 We ( 𝑅1 ‘ 𝑐 ) ) |
| 92 | sbccow | ⊢ ( [ ( 𝐻 ↾ 𝑐 ) / 𝑑 ] [ 𝑑 / 𝑧 ] 𝐺 We ( 𝑅1 ‘ 𝑐 ) ↔ [ ( 𝐻 ↾ 𝑐 ) / 𝑧 ] 𝐺 We ( 𝑅1 ‘ 𝑐 ) ) | |
| 93 | 91 92 | sylib | ⊢ ( ( 𝑐 ∈ On ∧ ∀ 𝑑 ∈ 𝑐 ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ∧ ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) ) → [ ( 𝐻 ↾ 𝑐 ) / 𝑧 ] 𝐺 We ( 𝑅1 ‘ 𝑐 ) ) |
| 94 | nfcsb1v | ⊢ Ⅎ 𝑧 ⦋ ( 𝐻 ↾ 𝑐 ) / 𝑧 ⦌ 𝐺 | |
| 95 | nfcv | ⊢ Ⅎ 𝑧 ( 𝑅1 ‘ 𝑐 ) | |
| 96 | 94 95 | nfwe | ⊢ Ⅎ 𝑧 ⦋ ( 𝐻 ↾ 𝑐 ) / 𝑧 ⦌ 𝐺 We ( 𝑅1 ‘ 𝑐 ) |
| 97 | csbeq1a | ⊢ ( 𝑧 = ( 𝐻 ↾ 𝑐 ) → 𝐺 = ⦋ ( 𝐻 ↾ 𝑐 ) / 𝑧 ⦌ 𝐺 ) | |
| 98 | weeq1 | ⊢ ( 𝐺 = ⦋ ( 𝐻 ↾ 𝑐 ) / 𝑧 ⦌ 𝐺 → ( 𝐺 We ( 𝑅1 ‘ 𝑐 ) ↔ ⦋ ( 𝐻 ↾ 𝑐 ) / 𝑧 ⦌ 𝐺 We ( 𝑅1 ‘ 𝑐 ) ) ) | |
| 99 | 97 98 | syl | ⊢ ( 𝑧 = ( 𝐻 ↾ 𝑐 ) → ( 𝐺 We ( 𝑅1 ‘ 𝑐 ) ↔ ⦋ ( 𝐻 ↾ 𝑐 ) / 𝑧 ⦌ 𝐺 We ( 𝑅1 ‘ 𝑐 ) ) ) |
| 100 | 96 99 | sbciegf | ⊢ ( ( 𝐻 ↾ 𝑐 ) ∈ V → ( [ ( 𝐻 ↾ 𝑐 ) / 𝑧 ] 𝐺 We ( 𝑅1 ‘ 𝑐 ) ↔ ⦋ ( 𝐻 ↾ 𝑐 ) / 𝑧 ⦌ 𝐺 We ( 𝑅1 ‘ 𝑐 ) ) ) |
| 101 | 88 100 | ax-mp | ⊢ ( [ ( 𝐻 ↾ 𝑐 ) / 𝑧 ] 𝐺 We ( 𝑅1 ‘ 𝑐 ) ↔ ⦋ ( 𝐻 ↾ 𝑐 ) / 𝑧 ⦌ 𝐺 We ( 𝑅1 ‘ 𝑐 ) ) |
| 102 | 93 101 | sylib | ⊢ ( ( 𝑐 ∈ On ∧ ∀ 𝑑 ∈ 𝑐 ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ∧ ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) ) → ⦋ ( 𝐻 ↾ 𝑐 ) / 𝑧 ⦌ 𝐺 We ( 𝑅1 ‘ 𝑐 ) ) |
| 103 | recsval | ⊢ ( 𝑐 ∈ On → ( recs ( ( 𝑧 ∈ V ↦ 𝐺 ) ) ‘ 𝑐 ) = ( ( 𝑧 ∈ V ↦ 𝐺 ) ‘ ( recs ( ( 𝑧 ∈ V ↦ 𝐺 ) ) ↾ 𝑐 ) ) ) | |
| 104 | 7 | fveq1i | ⊢ ( 𝐻 ‘ 𝑐 ) = ( recs ( ( 𝑧 ∈ V ↦ 𝐺 ) ) ‘ 𝑐 ) |
| 105 | fvex | ⊢ ( 𝑅1 ‘ dom 𝑧 ) ∈ V | |
| 106 | 105 105 | xpex | ⊢ ( ( 𝑅1 ‘ dom 𝑧 ) × ( 𝑅1 ‘ dom 𝑧 ) ) ∈ V |
| 107 | 106 | inex2 | ⊢ ( if ( dom 𝑧 = ∪ dom 𝑧 , 𝐹 , 𝐸 ) ∩ ( ( 𝑅1 ‘ dom 𝑧 ) × ( 𝑅1 ‘ dom 𝑧 ) ) ) ∈ V |
| 108 | 6 107 | eqeltri | ⊢ 𝐺 ∈ V |
| 109 | 108 | csbex | ⊢ ⦋ ( 𝐻 ↾ 𝑐 ) / 𝑧 ⦌ 𝐺 ∈ V |
| 110 | eqid | ⊢ ( 𝑧 ∈ V ↦ 𝐺 ) = ( 𝑧 ∈ V ↦ 𝐺 ) | |
| 111 | 110 | fvmpts | ⊢ ( ( ( 𝐻 ↾ 𝑐 ) ∈ V ∧ ⦋ ( 𝐻 ↾ 𝑐 ) / 𝑧 ⦌ 𝐺 ∈ V ) → ( ( 𝑧 ∈ V ↦ 𝐺 ) ‘ ( 𝐻 ↾ 𝑐 ) ) = ⦋ ( 𝐻 ↾ 𝑐 ) / 𝑧 ⦌ 𝐺 ) |
| 112 | 88 109 111 | mp2an | ⊢ ( ( 𝑧 ∈ V ↦ 𝐺 ) ‘ ( 𝐻 ↾ 𝑐 ) ) = ⦋ ( 𝐻 ↾ 𝑐 ) / 𝑧 ⦌ 𝐺 |
| 113 | 7 | reseq1i | ⊢ ( 𝐻 ↾ 𝑐 ) = ( recs ( ( 𝑧 ∈ V ↦ 𝐺 ) ) ↾ 𝑐 ) |
| 114 | 113 | fveq2i | ⊢ ( ( 𝑧 ∈ V ↦ 𝐺 ) ‘ ( 𝐻 ↾ 𝑐 ) ) = ( ( 𝑧 ∈ V ↦ 𝐺 ) ‘ ( recs ( ( 𝑧 ∈ V ↦ 𝐺 ) ) ↾ 𝑐 ) ) |
| 115 | 112 114 | eqtr3i | ⊢ ⦋ ( 𝐻 ↾ 𝑐 ) / 𝑧 ⦌ 𝐺 = ( ( 𝑧 ∈ V ↦ 𝐺 ) ‘ ( recs ( ( 𝑧 ∈ V ↦ 𝐺 ) ) ↾ 𝑐 ) ) |
| 116 | 103 104 115 | 3eqtr4g | ⊢ ( 𝑐 ∈ On → ( 𝐻 ‘ 𝑐 ) = ⦋ ( 𝐻 ↾ 𝑐 ) / 𝑧 ⦌ 𝐺 ) |
| 117 | weeq1 | ⊢ ( ( 𝐻 ‘ 𝑐 ) = ⦋ ( 𝐻 ↾ 𝑐 ) / 𝑧 ⦌ 𝐺 → ( ( 𝐻 ‘ 𝑐 ) We ( 𝑅1 ‘ 𝑐 ) ↔ ⦋ ( 𝐻 ↾ 𝑐 ) / 𝑧 ⦌ 𝐺 We ( 𝑅1 ‘ 𝑐 ) ) ) | |
| 118 | 116 117 | syl | ⊢ ( 𝑐 ∈ On → ( ( 𝐻 ‘ 𝑐 ) We ( 𝑅1 ‘ 𝑐 ) ↔ ⦋ ( 𝐻 ↾ 𝑐 ) / 𝑧 ⦌ 𝐺 We ( 𝑅1 ‘ 𝑐 ) ) ) |
| 119 | 118 | 3ad2ant1 | ⊢ ( ( 𝑐 ∈ On ∧ ∀ 𝑑 ∈ 𝑐 ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ∧ ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) ) → ( ( 𝐻 ‘ 𝑐 ) We ( 𝑅1 ‘ 𝑐 ) ↔ ⦋ ( 𝐻 ↾ 𝑐 ) / 𝑧 ⦌ 𝐺 We ( 𝑅1 ‘ 𝑐 ) ) ) |
| 120 | 102 119 | mpbird | ⊢ ( ( 𝑐 ∈ On ∧ ∀ 𝑑 ∈ 𝑐 ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) ∧ ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) ) → ( 𝐻 ‘ 𝑐 ) We ( 𝑅1 ‘ 𝑐 ) ) |
| 121 | 120 | 3exp | ⊢ ( 𝑐 ∈ On → ( ∀ 𝑑 ∈ 𝑐 ( ( 𝜑 ∧ 𝑑 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑑 ) We ( 𝑅1 ‘ 𝑑 ) ) → ( ( 𝜑 ∧ 𝑐 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝑐 ) We ( 𝑅1 ‘ 𝑐 ) ) ) ) |
| 122 | 17 23 121 | tfis3 | ⊢ ( 𝐴 ∈ On → ( ( 𝜑 ∧ 𝐴 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝐴 ) We ( 𝑅1 ‘ 𝐴 ) ) ) |
| 123 | 11 122 | mpcom | ⊢ ( ( 𝜑 ∧ 𝐴 ⊆ 𝐴 ) → ( 𝐻 ‘ 𝐴 ) We ( 𝑅1 ‘ 𝐴 ) ) |
| 124 | 10 123 | mpan2 | ⊢ ( 𝜑 → ( 𝐻 ‘ 𝐴 ) We ( 𝑅1 ‘ 𝐴 ) ) |