This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dfac11 . Transfinite induction, close over z . (Contributed by Stefan O'Rear, 20-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | aomclem6.b | |- B = { <. a , b >. | E. c e. ( R1 ` U. dom z ) ( ( c e. b /\ -. c e. a ) /\ A. d e. ( R1 ` U. dom z ) ( d ( z ` U. dom z ) c -> ( d e. a <-> d e. b ) ) ) } |
|
| aomclem6.c | |- C = ( a e. _V |-> sup ( ( y ` a ) , ( R1 ` dom z ) , B ) ) |
||
| aomclem6.d | |- D = recs ( ( a e. _V |-> ( C ` ( ( R1 ` dom z ) \ ran a ) ) ) ) |
||
| aomclem6.e | |- E = { <. a , b >. | |^| ( `' D " { a } ) e. |^| ( `' D " { b } ) } |
||
| aomclem6.f | |- F = { <. a , b >. | ( ( rank ` a ) _E ( rank ` b ) \/ ( ( rank ` a ) = ( rank ` b ) /\ a ( z ` suc ( rank ` a ) ) b ) ) } |
||
| aomclem6.g | |- G = ( if ( dom z = U. dom z , F , E ) i^i ( ( R1 ` dom z ) X. ( R1 ` dom z ) ) ) |
||
| aomclem6.h | |- H = recs ( ( z e. _V |-> G ) ) |
||
| aomclem6.a | |- ( ph -> A e. On ) |
||
| aomclem6.y | |- ( ph -> A. a e. ~P ( R1 ` A ) ( a =/= (/) -> ( y ` a ) e. ( ( ~P a i^i Fin ) \ { (/) } ) ) ) |
||
| Assertion | aomclem6 | |- ( ph -> ( H ` A ) We ( R1 ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aomclem6.b | |- B = { <. a , b >. | E. c e. ( R1 ` U. dom z ) ( ( c e. b /\ -. c e. a ) /\ A. d e. ( R1 ` U. dom z ) ( d ( z ` U. dom z ) c -> ( d e. a <-> d e. b ) ) ) } |
|
| 2 | aomclem6.c | |- C = ( a e. _V |-> sup ( ( y ` a ) , ( R1 ` dom z ) , B ) ) |
|
| 3 | aomclem6.d | |- D = recs ( ( a e. _V |-> ( C ` ( ( R1 ` dom z ) \ ran a ) ) ) ) |
|
| 4 | aomclem6.e | |- E = { <. a , b >. | |^| ( `' D " { a } ) e. |^| ( `' D " { b } ) } |
|
| 5 | aomclem6.f | |- F = { <. a , b >. | ( ( rank ` a ) _E ( rank ` b ) \/ ( ( rank ` a ) = ( rank ` b ) /\ a ( z ` suc ( rank ` a ) ) b ) ) } |
|
| 6 | aomclem6.g | |- G = ( if ( dom z = U. dom z , F , E ) i^i ( ( R1 ` dom z ) X. ( R1 ` dom z ) ) ) |
|
| 7 | aomclem6.h | |- H = recs ( ( z e. _V |-> G ) ) |
|
| 8 | aomclem6.a | |- ( ph -> A e. On ) |
|
| 9 | aomclem6.y | |- ( ph -> A. a e. ~P ( R1 ` A ) ( a =/= (/) -> ( y ` a ) e. ( ( ~P a i^i Fin ) \ { (/) } ) ) ) |
|
| 10 | ssid | |- A C_ A |
|
| 11 | 8 | adantr | |- ( ( ph /\ A C_ A ) -> A e. On ) |
| 12 | sseq1 | |- ( c = d -> ( c C_ A <-> d C_ A ) ) |
|
| 13 | 12 | anbi2d | |- ( c = d -> ( ( ph /\ c C_ A ) <-> ( ph /\ d C_ A ) ) ) |
| 14 | fveq2 | |- ( c = d -> ( H ` c ) = ( H ` d ) ) |
|
| 15 | fveq2 | |- ( c = d -> ( R1 ` c ) = ( R1 ` d ) ) |
|
| 16 | 14 15 | weeq12d | |- ( c = d -> ( ( H ` c ) We ( R1 ` c ) <-> ( H ` d ) We ( R1 ` d ) ) ) |
| 17 | 13 16 | imbi12d | |- ( c = d -> ( ( ( ph /\ c C_ A ) -> ( H ` c ) We ( R1 ` c ) ) <-> ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) ) ) |
| 18 | sseq1 | |- ( c = A -> ( c C_ A <-> A C_ A ) ) |
|
| 19 | 18 | anbi2d | |- ( c = A -> ( ( ph /\ c C_ A ) <-> ( ph /\ A C_ A ) ) ) |
| 20 | fveq2 | |- ( c = A -> ( H ` c ) = ( H ` A ) ) |
|
| 21 | fveq2 | |- ( c = A -> ( R1 ` c ) = ( R1 ` A ) ) |
|
| 22 | 20 21 | weeq12d | |- ( c = A -> ( ( H ` c ) We ( R1 ` c ) <-> ( H ` A ) We ( R1 ` A ) ) ) |
| 23 | 19 22 | imbi12d | |- ( c = A -> ( ( ( ph /\ c C_ A ) -> ( H ` c ) We ( R1 ` c ) ) <-> ( ( ph /\ A C_ A ) -> ( H ` A ) We ( R1 ` A ) ) ) ) |
| 24 | dmeq | |- ( z = ( H |` c ) -> dom z = dom ( H |` c ) ) |
|
| 25 | 24 | adantl | |- ( ( ( c e. On /\ A. d e. c ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) /\ ( ph /\ c C_ A ) ) /\ z = ( H |` c ) ) -> dom z = dom ( H |` c ) ) |
| 26 | simpl1 | |- ( ( ( c e. On /\ A. d e. c ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) /\ ( ph /\ c C_ A ) ) /\ z = ( H |` c ) ) -> c e. On ) |
|
| 27 | onss | |- ( c e. On -> c C_ On ) |
|
| 28 | 7 | tfr1 | |- H Fn On |
| 29 | fnssres | |- ( ( H Fn On /\ c C_ On ) -> ( H |` c ) Fn c ) |
|
| 30 | 28 29 | mpan | |- ( c C_ On -> ( H |` c ) Fn c ) |
| 31 | fndm | |- ( ( H |` c ) Fn c -> dom ( H |` c ) = c ) |
|
| 32 | 26 27 30 31 | 4syl | |- ( ( ( c e. On /\ A. d e. c ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) /\ ( ph /\ c C_ A ) ) /\ z = ( H |` c ) ) -> dom ( H |` c ) = c ) |
| 33 | 25 32 | eqtrd | |- ( ( ( c e. On /\ A. d e. c ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) /\ ( ph /\ c C_ A ) ) /\ z = ( H |` c ) ) -> dom z = c ) |
| 34 | 33 26 | eqeltrd | |- ( ( ( c e. On /\ A. d e. c ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) /\ ( ph /\ c C_ A ) ) /\ z = ( H |` c ) ) -> dom z e. On ) |
| 35 | 33 | eleq2d | |- ( ( ( c e. On /\ A. d e. c ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) /\ ( ph /\ c C_ A ) ) /\ z = ( H |` c ) ) -> ( a e. dom z <-> a e. c ) ) |
| 36 | 35 | biimpa | |- ( ( ( ( c e. On /\ A. d e. c ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) /\ ( ph /\ c C_ A ) ) /\ z = ( H |` c ) ) /\ a e. dom z ) -> a e. c ) |
| 37 | simpll2 | |- ( ( ( ( c e. On /\ A. d e. c ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) /\ ( ph /\ c C_ A ) ) /\ z = ( H |` c ) ) /\ a e. dom z ) -> A. d e. c ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) ) |
|
| 38 | simpl3l | |- ( ( ( c e. On /\ A. d e. c ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) /\ ( ph /\ c C_ A ) ) /\ z = ( H |` c ) ) -> ph ) |
|
| 39 | 38 | adantr | |- ( ( ( ( c e. On /\ A. d e. c ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) /\ ( ph /\ c C_ A ) ) /\ z = ( H |` c ) ) /\ a e. dom z ) -> ph ) |
| 40 | onelss | |- ( dom z e. On -> ( a e. dom z -> a C_ dom z ) ) |
|
| 41 | 34 40 | syl | |- ( ( ( c e. On /\ A. d e. c ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) /\ ( ph /\ c C_ A ) ) /\ z = ( H |` c ) ) -> ( a e. dom z -> a C_ dom z ) ) |
| 42 | 41 | imp | |- ( ( ( ( c e. On /\ A. d e. c ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) /\ ( ph /\ c C_ A ) ) /\ z = ( H |` c ) ) /\ a e. dom z ) -> a C_ dom z ) |
| 43 | simpl3r | |- ( ( ( c e. On /\ A. d e. c ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) /\ ( ph /\ c C_ A ) ) /\ z = ( H |` c ) ) -> c C_ A ) |
|
| 44 | 33 43 | eqsstrd | |- ( ( ( c e. On /\ A. d e. c ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) /\ ( ph /\ c C_ A ) ) /\ z = ( H |` c ) ) -> dom z C_ A ) |
| 45 | 44 | adantr | |- ( ( ( ( c e. On /\ A. d e. c ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) /\ ( ph /\ c C_ A ) ) /\ z = ( H |` c ) ) /\ a e. dom z ) -> dom z C_ A ) |
| 46 | 42 45 | sstrd | |- ( ( ( ( c e. On /\ A. d e. c ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) /\ ( ph /\ c C_ A ) ) /\ z = ( H |` c ) ) /\ a e. dom z ) -> a C_ A ) |
| 47 | sseq1 | |- ( d = a -> ( d C_ A <-> a C_ A ) ) |
|
| 48 | 47 | anbi2d | |- ( d = a -> ( ( ph /\ d C_ A ) <-> ( ph /\ a C_ A ) ) ) |
| 49 | fveq2 | |- ( d = a -> ( H ` d ) = ( H ` a ) ) |
|
| 50 | fveq2 | |- ( d = a -> ( R1 ` d ) = ( R1 ` a ) ) |
|
| 51 | 49 50 | weeq12d | |- ( d = a -> ( ( H ` d ) We ( R1 ` d ) <-> ( H ` a ) We ( R1 ` a ) ) ) |
| 52 | 48 51 | imbi12d | |- ( d = a -> ( ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) <-> ( ( ph /\ a C_ A ) -> ( H ` a ) We ( R1 ` a ) ) ) ) |
| 53 | 52 | rspcva | |- ( ( a e. c /\ A. d e. c ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) ) -> ( ( ph /\ a C_ A ) -> ( H ` a ) We ( R1 ` a ) ) ) |
| 54 | 53 | imp | |- ( ( ( a e. c /\ A. d e. c ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) ) /\ ( ph /\ a C_ A ) ) -> ( H ` a ) We ( R1 ` a ) ) |
| 55 | 36 37 39 46 54 | syl22anc | |- ( ( ( ( c e. On /\ A. d e. c ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) /\ ( ph /\ c C_ A ) ) /\ z = ( H |` c ) ) /\ a e. dom z ) -> ( H ` a ) We ( R1 ` a ) ) |
| 56 | fveq1 | |- ( z = ( H |` c ) -> ( z ` a ) = ( ( H |` c ) ` a ) ) |
|
| 57 | 56 | ad2antlr | |- ( ( ( ( c e. On /\ A. d e. c ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) /\ ( ph /\ c C_ A ) ) /\ z = ( H |` c ) ) /\ a e. dom z ) -> ( z ` a ) = ( ( H |` c ) ` a ) ) |
| 58 | fvres | |- ( a e. c -> ( ( H |` c ) ` a ) = ( H ` a ) ) |
|
| 59 | 36 58 | syl | |- ( ( ( ( c e. On /\ A. d e. c ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) /\ ( ph /\ c C_ A ) ) /\ z = ( H |` c ) ) /\ a e. dom z ) -> ( ( H |` c ) ` a ) = ( H ` a ) ) |
| 60 | 57 59 | eqtrd | |- ( ( ( ( c e. On /\ A. d e. c ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) /\ ( ph /\ c C_ A ) ) /\ z = ( H |` c ) ) /\ a e. dom z ) -> ( z ` a ) = ( H ` a ) ) |
| 61 | weeq1 | |- ( ( z ` a ) = ( H ` a ) -> ( ( z ` a ) We ( R1 ` a ) <-> ( H ` a ) We ( R1 ` a ) ) ) |
|
| 62 | 60 61 | syl | |- ( ( ( ( c e. On /\ A. d e. c ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) /\ ( ph /\ c C_ A ) ) /\ z = ( H |` c ) ) /\ a e. dom z ) -> ( ( z ` a ) We ( R1 ` a ) <-> ( H ` a ) We ( R1 ` a ) ) ) |
| 63 | 55 62 | mpbird | |- ( ( ( ( c e. On /\ A. d e. c ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) /\ ( ph /\ c C_ A ) ) /\ z = ( H |` c ) ) /\ a e. dom z ) -> ( z ` a ) We ( R1 ` a ) ) |
| 64 | 63 | ralrimiva | |- ( ( ( c e. On /\ A. d e. c ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) /\ ( ph /\ c C_ A ) ) /\ z = ( H |` c ) ) -> A. a e. dom z ( z ` a ) We ( R1 ` a ) ) |
| 65 | 38 8 | syl | |- ( ( ( c e. On /\ A. d e. c ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) /\ ( ph /\ c C_ A ) ) /\ z = ( H |` c ) ) -> A e. On ) |
| 66 | 38 9 | syl | |- ( ( ( c e. On /\ A. d e. c ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) /\ ( ph /\ c C_ A ) ) /\ z = ( H |` c ) ) -> A. a e. ~P ( R1 ` A ) ( a =/= (/) -> ( y ` a ) e. ( ( ~P a i^i Fin ) \ { (/) } ) ) ) |
| 67 | 1 2 3 4 5 6 34 64 65 44 66 | aomclem5 | |- ( ( ( c e. On /\ A. d e. c ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) /\ ( ph /\ c C_ A ) ) /\ z = ( H |` c ) ) -> G We ( R1 ` dom z ) ) |
| 68 | 33 | fveq2d | |- ( ( ( c e. On /\ A. d e. c ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) /\ ( ph /\ c C_ A ) ) /\ z = ( H |` c ) ) -> ( R1 ` dom z ) = ( R1 ` c ) ) |
| 69 | weeq2 | |- ( ( R1 ` dom z ) = ( R1 ` c ) -> ( G We ( R1 ` dom z ) <-> G We ( R1 ` c ) ) ) |
|
| 70 | 68 69 | syl | |- ( ( ( c e. On /\ A. d e. c ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) /\ ( ph /\ c C_ A ) ) /\ z = ( H |` c ) ) -> ( G We ( R1 ` dom z ) <-> G We ( R1 ` c ) ) ) |
| 71 | 67 70 | mpbid | |- ( ( ( c e. On /\ A. d e. c ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) /\ ( ph /\ c C_ A ) ) /\ z = ( H |` c ) ) -> G We ( R1 ` c ) ) |
| 72 | 71 | ex | |- ( ( c e. On /\ A. d e. c ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) /\ ( ph /\ c C_ A ) ) -> ( z = ( H |` c ) -> G We ( R1 ` c ) ) ) |
| 73 | 72 | alrimiv | |- ( ( c e. On /\ A. d e. c ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) /\ ( ph /\ c C_ A ) ) -> A. z ( z = ( H |` c ) -> G We ( R1 ` c ) ) ) |
| 74 | nfv | |- F/ d ( z = ( H |` c ) -> G We ( R1 ` c ) ) |
|
| 75 | nfv | |- F/ z d = ( H |` c ) |
|
| 76 | nfsbc1v | |- F/ z [. d / z ]. G We ( R1 ` c ) |
|
| 77 | 75 76 | nfim | |- F/ z ( d = ( H |` c ) -> [. d / z ]. G We ( R1 ` c ) ) |
| 78 | eqeq1 | |- ( z = d -> ( z = ( H |` c ) <-> d = ( H |` c ) ) ) |
|
| 79 | sbceq1a | |- ( z = d -> ( G We ( R1 ` c ) <-> [. d / z ]. G We ( R1 ` c ) ) ) |
|
| 80 | 78 79 | imbi12d | |- ( z = d -> ( ( z = ( H |` c ) -> G We ( R1 ` c ) ) <-> ( d = ( H |` c ) -> [. d / z ]. G We ( R1 ` c ) ) ) ) |
| 81 | 74 77 80 | cbvalv1 | |- ( A. z ( z = ( H |` c ) -> G We ( R1 ` c ) ) <-> A. d ( d = ( H |` c ) -> [. d / z ]. G We ( R1 ` c ) ) ) |
| 82 | 73 81 | sylib | |- ( ( c e. On /\ A. d e. c ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) /\ ( ph /\ c C_ A ) ) -> A. d ( d = ( H |` c ) -> [. d / z ]. G We ( R1 ` c ) ) ) |
| 83 | nfsbc1v | |- F/ d [. ( H |` c ) / d ]. [. d / z ]. G We ( R1 ` c ) |
|
| 84 | fnfun | |- ( H Fn On -> Fun H ) |
|
| 85 | 28 84 | ax-mp | |- Fun H |
| 86 | vex | |- c e. _V |
|
| 87 | resfunexg | |- ( ( Fun H /\ c e. _V ) -> ( H |` c ) e. _V ) |
|
| 88 | 85 86 87 | mp2an | |- ( H |` c ) e. _V |
| 89 | sbceq1a | |- ( d = ( H |` c ) -> ( [. d / z ]. G We ( R1 ` c ) <-> [. ( H |` c ) / d ]. [. d / z ]. G We ( R1 ` c ) ) ) |
|
| 90 | 83 88 89 | ceqsal | |- ( A. d ( d = ( H |` c ) -> [. d / z ]. G We ( R1 ` c ) ) <-> [. ( H |` c ) / d ]. [. d / z ]. G We ( R1 ` c ) ) |
| 91 | 82 90 | sylib | |- ( ( c e. On /\ A. d e. c ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) /\ ( ph /\ c C_ A ) ) -> [. ( H |` c ) / d ]. [. d / z ]. G We ( R1 ` c ) ) |
| 92 | sbccow | |- ( [. ( H |` c ) / d ]. [. d / z ]. G We ( R1 ` c ) <-> [. ( H |` c ) / z ]. G We ( R1 ` c ) ) |
|
| 93 | 91 92 | sylib | |- ( ( c e. On /\ A. d e. c ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) /\ ( ph /\ c C_ A ) ) -> [. ( H |` c ) / z ]. G We ( R1 ` c ) ) |
| 94 | nfcsb1v | |- F/_ z [_ ( H |` c ) / z ]_ G |
|
| 95 | nfcv | |- F/_ z ( R1 ` c ) |
|
| 96 | 94 95 | nfwe | |- F/ z [_ ( H |` c ) / z ]_ G We ( R1 ` c ) |
| 97 | csbeq1a | |- ( z = ( H |` c ) -> G = [_ ( H |` c ) / z ]_ G ) |
|
| 98 | weeq1 | |- ( G = [_ ( H |` c ) / z ]_ G -> ( G We ( R1 ` c ) <-> [_ ( H |` c ) / z ]_ G We ( R1 ` c ) ) ) |
|
| 99 | 97 98 | syl | |- ( z = ( H |` c ) -> ( G We ( R1 ` c ) <-> [_ ( H |` c ) / z ]_ G We ( R1 ` c ) ) ) |
| 100 | 96 99 | sbciegf | |- ( ( H |` c ) e. _V -> ( [. ( H |` c ) / z ]. G We ( R1 ` c ) <-> [_ ( H |` c ) / z ]_ G We ( R1 ` c ) ) ) |
| 101 | 88 100 | ax-mp | |- ( [. ( H |` c ) / z ]. G We ( R1 ` c ) <-> [_ ( H |` c ) / z ]_ G We ( R1 ` c ) ) |
| 102 | 93 101 | sylib | |- ( ( c e. On /\ A. d e. c ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) /\ ( ph /\ c C_ A ) ) -> [_ ( H |` c ) / z ]_ G We ( R1 ` c ) ) |
| 103 | recsval | |- ( c e. On -> ( recs ( ( z e. _V |-> G ) ) ` c ) = ( ( z e. _V |-> G ) ` ( recs ( ( z e. _V |-> G ) ) |` c ) ) ) |
|
| 104 | 7 | fveq1i | |- ( H ` c ) = ( recs ( ( z e. _V |-> G ) ) ` c ) |
| 105 | fvex | |- ( R1 ` dom z ) e. _V |
|
| 106 | 105 105 | xpex | |- ( ( R1 ` dom z ) X. ( R1 ` dom z ) ) e. _V |
| 107 | 106 | inex2 | |- ( if ( dom z = U. dom z , F , E ) i^i ( ( R1 ` dom z ) X. ( R1 ` dom z ) ) ) e. _V |
| 108 | 6 107 | eqeltri | |- G e. _V |
| 109 | 108 | csbex | |- [_ ( H |` c ) / z ]_ G e. _V |
| 110 | eqid | |- ( z e. _V |-> G ) = ( z e. _V |-> G ) |
|
| 111 | 110 | fvmpts | |- ( ( ( H |` c ) e. _V /\ [_ ( H |` c ) / z ]_ G e. _V ) -> ( ( z e. _V |-> G ) ` ( H |` c ) ) = [_ ( H |` c ) / z ]_ G ) |
| 112 | 88 109 111 | mp2an | |- ( ( z e. _V |-> G ) ` ( H |` c ) ) = [_ ( H |` c ) / z ]_ G |
| 113 | 7 | reseq1i | |- ( H |` c ) = ( recs ( ( z e. _V |-> G ) ) |` c ) |
| 114 | 113 | fveq2i | |- ( ( z e. _V |-> G ) ` ( H |` c ) ) = ( ( z e. _V |-> G ) ` ( recs ( ( z e. _V |-> G ) ) |` c ) ) |
| 115 | 112 114 | eqtr3i | |- [_ ( H |` c ) / z ]_ G = ( ( z e. _V |-> G ) ` ( recs ( ( z e. _V |-> G ) ) |` c ) ) |
| 116 | 103 104 115 | 3eqtr4g | |- ( c e. On -> ( H ` c ) = [_ ( H |` c ) / z ]_ G ) |
| 117 | weeq1 | |- ( ( H ` c ) = [_ ( H |` c ) / z ]_ G -> ( ( H ` c ) We ( R1 ` c ) <-> [_ ( H |` c ) / z ]_ G We ( R1 ` c ) ) ) |
|
| 118 | 116 117 | syl | |- ( c e. On -> ( ( H ` c ) We ( R1 ` c ) <-> [_ ( H |` c ) / z ]_ G We ( R1 ` c ) ) ) |
| 119 | 118 | 3ad2ant1 | |- ( ( c e. On /\ A. d e. c ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) /\ ( ph /\ c C_ A ) ) -> ( ( H ` c ) We ( R1 ` c ) <-> [_ ( H |` c ) / z ]_ G We ( R1 ` c ) ) ) |
| 120 | 102 119 | mpbird | |- ( ( c e. On /\ A. d e. c ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) /\ ( ph /\ c C_ A ) ) -> ( H ` c ) We ( R1 ` c ) ) |
| 121 | 120 | 3exp | |- ( c e. On -> ( A. d e. c ( ( ph /\ d C_ A ) -> ( H ` d ) We ( R1 ` d ) ) -> ( ( ph /\ c C_ A ) -> ( H ` c ) We ( R1 ` c ) ) ) ) |
| 122 | 17 23 121 | tfis3 | |- ( A e. On -> ( ( ph /\ A C_ A ) -> ( H ` A ) We ( R1 ` A ) ) ) |
| 123 | 11 122 | mpcom | |- ( ( ph /\ A C_ A ) -> ( H ` A ) We ( R1 ` A ) ) |
| 124 | 10 123 | mpan2 | |- ( ph -> ( H ` A ) We ( R1 ` A ) ) |