This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dfac11 . ( R1A ) is well-orderable. (Contributed by Stefan O'Rear, 20-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | aomclem6.b | ⊢ 𝐵 = { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ ( 𝑅1 ‘ ∪ dom 𝑧 ) ( ( 𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎 ) ∧ ∀ 𝑑 ∈ ( 𝑅1 ‘ ∪ dom 𝑧 ) ( 𝑑 ( 𝑧 ‘ ∪ dom 𝑧 ) 𝑐 → ( 𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏 ) ) ) } | |
| aomclem6.c | ⊢ 𝐶 = ( 𝑎 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑎 ) , ( 𝑅1 ‘ dom 𝑧 ) , 𝐵 ) ) | ||
| aomclem6.d | ⊢ 𝐷 = recs ( ( 𝑎 ∈ V ↦ ( 𝐶 ‘ ( ( 𝑅1 ‘ dom 𝑧 ) ∖ ran 𝑎 ) ) ) ) | ||
| aomclem6.e | ⊢ 𝐸 = { 〈 𝑎 , 𝑏 〉 ∣ ∩ ( ◡ 𝐷 “ { 𝑎 } ) ∈ ∩ ( ◡ 𝐷 “ { 𝑏 } ) } | ||
| aomclem6.f | ⊢ 𝐹 = { 〈 𝑎 , 𝑏 〉 ∣ ( ( rank ‘ 𝑎 ) E ( rank ‘ 𝑏 ) ∨ ( ( rank ‘ 𝑎 ) = ( rank ‘ 𝑏 ) ∧ 𝑎 ( 𝑧 ‘ suc ( rank ‘ 𝑎 ) ) 𝑏 ) ) } | ||
| aomclem6.g | ⊢ 𝐺 = ( if ( dom 𝑧 = ∪ dom 𝑧 , 𝐹 , 𝐸 ) ∩ ( ( 𝑅1 ‘ dom 𝑧 ) × ( 𝑅1 ‘ dom 𝑧 ) ) ) | ||
| aomclem6.h | ⊢ 𝐻 = recs ( ( 𝑧 ∈ V ↦ 𝐺 ) ) | ||
| aomclem6.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | ||
| aomclem6.y | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ( 𝑎 ≠ ∅ → ( 𝑦 ‘ 𝑎 ) ∈ ( ( 𝒫 𝑎 ∩ Fin ) ∖ { ∅ } ) ) ) | ||
| Assertion | aomclem7 | ⊢ ( 𝜑 → ∃ 𝑏 𝑏 We ( 𝑅1 ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aomclem6.b | ⊢ 𝐵 = { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ ( 𝑅1 ‘ ∪ dom 𝑧 ) ( ( 𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎 ) ∧ ∀ 𝑑 ∈ ( 𝑅1 ‘ ∪ dom 𝑧 ) ( 𝑑 ( 𝑧 ‘ ∪ dom 𝑧 ) 𝑐 → ( 𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏 ) ) ) } | |
| 2 | aomclem6.c | ⊢ 𝐶 = ( 𝑎 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑎 ) , ( 𝑅1 ‘ dom 𝑧 ) , 𝐵 ) ) | |
| 3 | aomclem6.d | ⊢ 𝐷 = recs ( ( 𝑎 ∈ V ↦ ( 𝐶 ‘ ( ( 𝑅1 ‘ dom 𝑧 ) ∖ ran 𝑎 ) ) ) ) | |
| 4 | aomclem6.e | ⊢ 𝐸 = { 〈 𝑎 , 𝑏 〉 ∣ ∩ ( ◡ 𝐷 “ { 𝑎 } ) ∈ ∩ ( ◡ 𝐷 “ { 𝑏 } ) } | |
| 5 | aomclem6.f | ⊢ 𝐹 = { 〈 𝑎 , 𝑏 〉 ∣ ( ( rank ‘ 𝑎 ) E ( rank ‘ 𝑏 ) ∨ ( ( rank ‘ 𝑎 ) = ( rank ‘ 𝑏 ) ∧ 𝑎 ( 𝑧 ‘ suc ( rank ‘ 𝑎 ) ) 𝑏 ) ) } | |
| 6 | aomclem6.g | ⊢ 𝐺 = ( if ( dom 𝑧 = ∪ dom 𝑧 , 𝐹 , 𝐸 ) ∩ ( ( 𝑅1 ‘ dom 𝑧 ) × ( 𝑅1 ‘ dom 𝑧 ) ) ) | |
| 7 | aomclem6.h | ⊢ 𝐻 = recs ( ( 𝑧 ∈ V ↦ 𝐺 ) ) | |
| 8 | aomclem6.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 9 | aomclem6.y | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ( 𝑎 ≠ ∅ → ( 𝑦 ‘ 𝑎 ) ∈ ( ( 𝒫 𝑎 ∩ Fin ) ∖ { ∅ } ) ) ) | |
| 10 | 1 2 3 4 5 6 7 8 9 | aomclem6 | ⊢ ( 𝜑 → ( 𝐻 ‘ 𝐴 ) We ( 𝑅1 ‘ 𝐴 ) ) |
| 11 | fvex | ⊢ ( 𝐻 ‘ 𝐴 ) ∈ V | |
| 12 | weeq1 | ⊢ ( 𝑏 = ( 𝐻 ‘ 𝐴 ) → ( 𝑏 We ( 𝑅1 ‘ 𝐴 ) ↔ ( 𝐻 ‘ 𝐴 ) We ( 𝑅1 ‘ 𝐴 ) ) ) | |
| 13 | 11 12 | spcev | ⊢ ( ( 𝐻 ‘ 𝐴 ) We ( 𝑅1 ‘ 𝐴 ) → ∃ 𝑏 𝑏 We ( 𝑅1 ‘ 𝐴 ) ) |
| 14 | 10 13 | syl | ⊢ ( 𝜑 → ∃ 𝑏 𝑏 We ( 𝑅1 ‘ 𝐴 ) ) |