This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 18-Aug-1993) Avoid df-clab . (Revised by Wolf Lammen, 23-Jan-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ceqsal.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| ceqsal.2 | ⊢ 𝐴 ∈ V | ||
| ceqsal.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | ceqsal | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqsal.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| 2 | ceqsal.2 | ⊢ 𝐴 ∈ V | |
| 3 | ceqsal.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | 1 | 19.23 | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) ↔ ( ∃ 𝑥 𝑥 = 𝐴 → 𝜓 ) ) |
| 5 | 3 | pm5.74i | ⊢ ( ( 𝑥 = 𝐴 → 𝜑 ) ↔ ( 𝑥 = 𝐴 → 𝜓 ) ) |
| 6 | 5 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) ) |
| 7 | 2 | isseti | ⊢ ∃ 𝑥 𝑥 = 𝐴 |
| 8 | 7 | a1bi | ⊢ ( 𝜓 ↔ ( ∃ 𝑥 𝑥 = 𝐴 → 𝜓 ) ) |
| 9 | 4 6 8 | 3bitr4i | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ 𝜓 ) |