This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dfac11 . Combine the successor case with the limit case. (Contributed by Stefan O'Rear, 20-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | aomclem5.b | ⊢ 𝐵 = { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ ( 𝑅1 ‘ ∪ dom 𝑧 ) ( ( 𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎 ) ∧ ∀ 𝑑 ∈ ( 𝑅1 ‘ ∪ dom 𝑧 ) ( 𝑑 ( 𝑧 ‘ ∪ dom 𝑧 ) 𝑐 → ( 𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏 ) ) ) } | |
| aomclem5.c | ⊢ 𝐶 = ( 𝑎 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑎 ) , ( 𝑅1 ‘ dom 𝑧 ) , 𝐵 ) ) | ||
| aomclem5.d | ⊢ 𝐷 = recs ( ( 𝑎 ∈ V ↦ ( 𝐶 ‘ ( ( 𝑅1 ‘ dom 𝑧 ) ∖ ran 𝑎 ) ) ) ) | ||
| aomclem5.e | ⊢ 𝐸 = { 〈 𝑎 , 𝑏 〉 ∣ ∩ ( ◡ 𝐷 “ { 𝑎 } ) ∈ ∩ ( ◡ 𝐷 “ { 𝑏 } ) } | ||
| aomclem5.f | ⊢ 𝐹 = { 〈 𝑎 , 𝑏 〉 ∣ ( ( rank ‘ 𝑎 ) E ( rank ‘ 𝑏 ) ∨ ( ( rank ‘ 𝑎 ) = ( rank ‘ 𝑏 ) ∧ 𝑎 ( 𝑧 ‘ suc ( rank ‘ 𝑎 ) ) 𝑏 ) ) } | ||
| aomclem5.g | ⊢ 𝐺 = ( if ( dom 𝑧 = ∪ dom 𝑧 , 𝐹 , 𝐸 ) ∩ ( ( 𝑅1 ‘ dom 𝑧 ) × ( 𝑅1 ‘ dom 𝑧 ) ) ) | ||
| aomclem5.on | ⊢ ( 𝜑 → dom 𝑧 ∈ On ) | ||
| aomclem5.we | ⊢ ( 𝜑 → ∀ 𝑎 ∈ dom 𝑧 ( 𝑧 ‘ 𝑎 ) We ( 𝑅1 ‘ 𝑎 ) ) | ||
| aomclem5.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | ||
| aomclem5.za | ⊢ ( 𝜑 → dom 𝑧 ⊆ 𝐴 ) | ||
| aomclem5.y | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ( 𝑎 ≠ ∅ → ( 𝑦 ‘ 𝑎 ) ∈ ( ( 𝒫 𝑎 ∩ Fin ) ∖ { ∅ } ) ) ) | ||
| Assertion | aomclem5 | ⊢ ( 𝜑 → 𝐺 We ( 𝑅1 ‘ dom 𝑧 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aomclem5.b | ⊢ 𝐵 = { 〈 𝑎 , 𝑏 〉 ∣ ∃ 𝑐 ∈ ( 𝑅1 ‘ ∪ dom 𝑧 ) ( ( 𝑐 ∈ 𝑏 ∧ ¬ 𝑐 ∈ 𝑎 ) ∧ ∀ 𝑑 ∈ ( 𝑅1 ‘ ∪ dom 𝑧 ) ( 𝑑 ( 𝑧 ‘ ∪ dom 𝑧 ) 𝑐 → ( 𝑑 ∈ 𝑎 ↔ 𝑑 ∈ 𝑏 ) ) ) } | |
| 2 | aomclem5.c | ⊢ 𝐶 = ( 𝑎 ∈ V ↦ sup ( ( 𝑦 ‘ 𝑎 ) , ( 𝑅1 ‘ dom 𝑧 ) , 𝐵 ) ) | |
| 3 | aomclem5.d | ⊢ 𝐷 = recs ( ( 𝑎 ∈ V ↦ ( 𝐶 ‘ ( ( 𝑅1 ‘ dom 𝑧 ) ∖ ran 𝑎 ) ) ) ) | |
| 4 | aomclem5.e | ⊢ 𝐸 = { 〈 𝑎 , 𝑏 〉 ∣ ∩ ( ◡ 𝐷 “ { 𝑎 } ) ∈ ∩ ( ◡ 𝐷 “ { 𝑏 } ) } | |
| 5 | aomclem5.f | ⊢ 𝐹 = { 〈 𝑎 , 𝑏 〉 ∣ ( ( rank ‘ 𝑎 ) E ( rank ‘ 𝑏 ) ∨ ( ( rank ‘ 𝑎 ) = ( rank ‘ 𝑏 ) ∧ 𝑎 ( 𝑧 ‘ suc ( rank ‘ 𝑎 ) ) 𝑏 ) ) } | |
| 6 | aomclem5.g | ⊢ 𝐺 = ( if ( dom 𝑧 = ∪ dom 𝑧 , 𝐹 , 𝐸 ) ∩ ( ( 𝑅1 ‘ dom 𝑧 ) × ( 𝑅1 ‘ dom 𝑧 ) ) ) | |
| 7 | aomclem5.on | ⊢ ( 𝜑 → dom 𝑧 ∈ On ) | |
| 8 | aomclem5.we | ⊢ ( 𝜑 → ∀ 𝑎 ∈ dom 𝑧 ( 𝑧 ‘ 𝑎 ) We ( 𝑅1 ‘ 𝑎 ) ) | |
| 9 | aomclem5.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 10 | aomclem5.za | ⊢ ( 𝜑 → dom 𝑧 ⊆ 𝐴 ) | |
| 11 | aomclem5.y | ⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ( 𝑎 ≠ ∅ → ( 𝑦 ‘ 𝑎 ) ∈ ( ( 𝒫 𝑎 ∩ Fin ) ∖ { ∅ } ) ) ) | |
| 12 | 7 | adantr | ⊢ ( ( 𝜑 ∧ dom 𝑧 = ∪ dom 𝑧 ) → dom 𝑧 ∈ On ) |
| 13 | simpr | ⊢ ( ( 𝜑 ∧ dom 𝑧 = ∪ dom 𝑧 ) → dom 𝑧 = ∪ dom 𝑧 ) | |
| 14 | 8 | adantr | ⊢ ( ( 𝜑 ∧ dom 𝑧 = ∪ dom 𝑧 ) → ∀ 𝑎 ∈ dom 𝑧 ( 𝑧 ‘ 𝑎 ) We ( 𝑅1 ‘ 𝑎 ) ) |
| 15 | 5 12 13 14 | aomclem4 | ⊢ ( ( 𝜑 ∧ dom 𝑧 = ∪ dom 𝑧 ) → 𝐹 We ( 𝑅1 ‘ dom 𝑧 ) ) |
| 16 | iftrue | ⊢ ( dom 𝑧 = ∪ dom 𝑧 → if ( dom 𝑧 = ∪ dom 𝑧 , 𝐹 , 𝐸 ) = 𝐹 ) | |
| 17 | 16 | adantl | ⊢ ( ( 𝜑 ∧ dom 𝑧 = ∪ dom 𝑧 ) → if ( dom 𝑧 = ∪ dom 𝑧 , 𝐹 , 𝐸 ) = 𝐹 ) |
| 18 | eqidd | ⊢ ( ( 𝜑 ∧ dom 𝑧 = ∪ dom 𝑧 ) → ( 𝑅1 ‘ dom 𝑧 ) = ( 𝑅1 ‘ dom 𝑧 ) ) | |
| 19 | 17 18 | weeq12d | ⊢ ( ( 𝜑 ∧ dom 𝑧 = ∪ dom 𝑧 ) → ( if ( dom 𝑧 = ∪ dom 𝑧 , 𝐹 , 𝐸 ) We ( 𝑅1 ‘ dom 𝑧 ) ↔ 𝐹 We ( 𝑅1 ‘ dom 𝑧 ) ) ) |
| 20 | 15 19 | mpbird | ⊢ ( ( 𝜑 ∧ dom 𝑧 = ∪ dom 𝑧 ) → if ( dom 𝑧 = ∪ dom 𝑧 , 𝐹 , 𝐸 ) We ( 𝑅1 ‘ dom 𝑧 ) ) |
| 21 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ¬ dom 𝑧 = ∪ dom 𝑧 ) → dom 𝑧 ∈ On ) |
| 22 | eloni | ⊢ ( dom 𝑧 ∈ On → Ord dom 𝑧 ) | |
| 23 | orduniorsuc | ⊢ ( Ord dom 𝑧 → ( dom 𝑧 = ∪ dom 𝑧 ∨ dom 𝑧 = suc ∪ dom 𝑧 ) ) | |
| 24 | 7 22 23 | 3syl | ⊢ ( 𝜑 → ( dom 𝑧 = ∪ dom 𝑧 ∨ dom 𝑧 = suc ∪ dom 𝑧 ) ) |
| 25 | 24 | orcanai | ⊢ ( ( 𝜑 ∧ ¬ dom 𝑧 = ∪ dom 𝑧 ) → dom 𝑧 = suc ∪ dom 𝑧 ) |
| 26 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ¬ dom 𝑧 = ∪ dom 𝑧 ) → ∀ 𝑎 ∈ dom 𝑧 ( 𝑧 ‘ 𝑎 ) We ( 𝑅1 ‘ 𝑎 ) ) |
| 27 | 9 | adantr | ⊢ ( ( 𝜑 ∧ ¬ dom 𝑧 = ∪ dom 𝑧 ) → 𝐴 ∈ On ) |
| 28 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ¬ dom 𝑧 = ∪ dom 𝑧 ) → dom 𝑧 ⊆ 𝐴 ) |
| 29 | 11 | adantr | ⊢ ( ( 𝜑 ∧ ¬ dom 𝑧 = ∪ dom 𝑧 ) → ∀ 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝐴 ) ( 𝑎 ≠ ∅ → ( 𝑦 ‘ 𝑎 ) ∈ ( ( 𝒫 𝑎 ∩ Fin ) ∖ { ∅ } ) ) ) |
| 30 | 1 2 3 4 21 25 26 27 28 29 | aomclem3 | ⊢ ( ( 𝜑 ∧ ¬ dom 𝑧 = ∪ dom 𝑧 ) → 𝐸 We ( 𝑅1 ‘ dom 𝑧 ) ) |
| 31 | iffalse | ⊢ ( ¬ dom 𝑧 = ∪ dom 𝑧 → if ( dom 𝑧 = ∪ dom 𝑧 , 𝐹 , 𝐸 ) = 𝐸 ) | |
| 32 | 31 | adantl | ⊢ ( ( 𝜑 ∧ ¬ dom 𝑧 = ∪ dom 𝑧 ) → if ( dom 𝑧 = ∪ dom 𝑧 , 𝐹 , 𝐸 ) = 𝐸 ) |
| 33 | eqidd | ⊢ ( ( 𝜑 ∧ ¬ dom 𝑧 = ∪ dom 𝑧 ) → ( 𝑅1 ‘ dom 𝑧 ) = ( 𝑅1 ‘ dom 𝑧 ) ) | |
| 34 | 32 33 | weeq12d | ⊢ ( ( 𝜑 ∧ ¬ dom 𝑧 = ∪ dom 𝑧 ) → ( if ( dom 𝑧 = ∪ dom 𝑧 , 𝐹 , 𝐸 ) We ( 𝑅1 ‘ dom 𝑧 ) ↔ 𝐸 We ( 𝑅1 ‘ dom 𝑧 ) ) ) |
| 35 | 30 34 | mpbird | ⊢ ( ( 𝜑 ∧ ¬ dom 𝑧 = ∪ dom 𝑧 ) → if ( dom 𝑧 = ∪ dom 𝑧 , 𝐹 , 𝐸 ) We ( 𝑅1 ‘ dom 𝑧 ) ) |
| 36 | 20 35 | pm2.61dan | ⊢ ( 𝜑 → if ( dom 𝑧 = ∪ dom 𝑧 , 𝐹 , 𝐸 ) We ( 𝑅1 ‘ dom 𝑧 ) ) |
| 37 | weinxp | ⊢ ( if ( dom 𝑧 = ∪ dom 𝑧 , 𝐹 , 𝐸 ) We ( 𝑅1 ‘ dom 𝑧 ) ↔ ( if ( dom 𝑧 = ∪ dom 𝑧 , 𝐹 , 𝐸 ) ∩ ( ( 𝑅1 ‘ dom 𝑧 ) × ( 𝑅1 ‘ dom 𝑧 ) ) ) We ( 𝑅1 ‘ dom 𝑧 ) ) | |
| 38 | 36 37 | sylib | ⊢ ( 𝜑 → ( if ( dom 𝑧 = ∪ dom 𝑧 , 𝐹 , 𝐸 ) ∩ ( ( 𝑅1 ‘ dom 𝑧 ) × ( 𝑅1 ‘ dom 𝑧 ) ) ) We ( 𝑅1 ‘ dom 𝑧 ) ) |
| 39 | weeq1 | ⊢ ( 𝐺 = ( if ( dom 𝑧 = ∪ dom 𝑧 , 𝐹 , 𝐸 ) ∩ ( ( 𝑅1 ‘ dom 𝑧 ) × ( 𝑅1 ‘ dom 𝑧 ) ) ) → ( 𝐺 We ( 𝑅1 ‘ dom 𝑧 ) ↔ ( if ( dom 𝑧 = ∪ dom 𝑧 , 𝐹 , 𝐸 ) ∩ ( ( 𝑅1 ‘ dom 𝑧 ) × ( 𝑅1 ‘ dom 𝑧 ) ) ) We ( 𝑅1 ‘ dom 𝑧 ) ) ) | |
| 40 | 6 39 | ax-mp | ⊢ ( 𝐺 We ( 𝑅1 ‘ dom 𝑧 ) ↔ ( if ( dom 𝑧 = ∪ dom 𝑧 , 𝐹 , 𝐸 ) ∩ ( ( 𝑅1 ‘ dom 𝑧 ) × ( 𝑅1 ‘ dom 𝑧 ) ) ) We ( 𝑅1 ‘ dom 𝑧 ) ) |
| 41 | 38 40 | sylibr | ⊢ ( 𝜑 → 𝐺 We ( 𝑅1 ‘ dom 𝑧 ) ) |