This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate way to express the value of the aleph function for nonzero arguments. Theorem 64 of Suppes p. 229. (Contributed by NM, 15-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephval2 | ⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( ℵ ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑥 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephordi | ⊢ ( 𝐴 ∈ On → ( 𝑦 ∈ 𝐴 → ( ℵ ‘ 𝑦 ) ≺ ( ℵ ‘ 𝐴 ) ) ) | |
| 2 | 1 | ralrimiv | ⊢ ( 𝐴 ∈ On → ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ ( ℵ ‘ 𝐴 ) ) |
| 3 | alephon | ⊢ ( ℵ ‘ 𝐴 ) ∈ On | |
| 4 | 2 3 | jctil | ⊢ ( 𝐴 ∈ On → ( ( ℵ ‘ 𝐴 ) ∈ On ∧ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ ( ℵ ‘ 𝐴 ) ) ) |
| 5 | breq2 | ⊢ ( 𝑥 = ( ℵ ‘ 𝐴 ) → ( ( ℵ ‘ 𝑦 ) ≺ 𝑥 ↔ ( ℵ ‘ 𝑦 ) ≺ ( ℵ ‘ 𝐴 ) ) ) | |
| 6 | 5 | ralbidv | ⊢ ( 𝑥 = ( ℵ ‘ 𝐴 ) → ( ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑥 ↔ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ ( ℵ ‘ 𝐴 ) ) ) |
| 7 | 6 | elrab | ⊢ ( ( ℵ ‘ 𝐴 ) ∈ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑥 } ↔ ( ( ℵ ‘ 𝐴 ) ∈ On ∧ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ ( ℵ ‘ 𝐴 ) ) ) |
| 8 | 4 7 | sylibr | ⊢ ( 𝐴 ∈ On → ( ℵ ‘ 𝐴 ) ∈ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑥 } ) |
| 9 | cardsdomelir | ⊢ ( 𝑧 ∈ ( card ‘ ( ℵ ‘ 𝐴 ) ) → 𝑧 ≺ ( ℵ ‘ 𝐴 ) ) | |
| 10 | alephcard | ⊢ ( card ‘ ( ℵ ‘ 𝐴 ) ) = ( ℵ ‘ 𝐴 ) | |
| 11 | 10 | eqcomi | ⊢ ( ℵ ‘ 𝐴 ) = ( card ‘ ( ℵ ‘ 𝐴 ) ) |
| 12 | 9 11 | eleq2s | ⊢ ( 𝑧 ∈ ( ℵ ‘ 𝐴 ) → 𝑧 ≺ ( ℵ ‘ 𝐴 ) ) |
| 13 | omex | ⊢ ω ∈ V | |
| 14 | vex | ⊢ 𝑧 ∈ V | |
| 15 | entri3 | ⊢ ( ( ω ∈ V ∧ 𝑧 ∈ V ) → ( ω ≼ 𝑧 ∨ 𝑧 ≼ ω ) ) | |
| 16 | 13 14 15 | mp2an | ⊢ ( ω ≼ 𝑧 ∨ 𝑧 ≼ ω ) |
| 17 | carddom | ⊢ ( ( ω ∈ V ∧ 𝑧 ∈ V ) → ( ( card ‘ ω ) ⊆ ( card ‘ 𝑧 ) ↔ ω ≼ 𝑧 ) ) | |
| 18 | 13 14 17 | mp2an | ⊢ ( ( card ‘ ω ) ⊆ ( card ‘ 𝑧 ) ↔ ω ≼ 𝑧 ) |
| 19 | cardom | ⊢ ( card ‘ ω ) = ω | |
| 20 | 19 | sseq1i | ⊢ ( ( card ‘ ω ) ⊆ ( card ‘ 𝑧 ) ↔ ω ⊆ ( card ‘ 𝑧 ) ) |
| 21 | 18 20 | bitr3i | ⊢ ( ω ≼ 𝑧 ↔ ω ⊆ ( card ‘ 𝑧 ) ) |
| 22 | cardidm | ⊢ ( card ‘ ( card ‘ 𝑧 ) ) = ( card ‘ 𝑧 ) | |
| 23 | cardalephex | ⊢ ( ω ⊆ ( card ‘ 𝑧 ) → ( ( card ‘ ( card ‘ 𝑧 ) ) = ( card ‘ 𝑧 ) ↔ ∃ 𝑥 ∈ On ( card ‘ 𝑧 ) = ( ℵ ‘ 𝑥 ) ) ) | |
| 24 | 22 23 | mpbii | ⊢ ( ω ⊆ ( card ‘ 𝑧 ) → ∃ 𝑥 ∈ On ( card ‘ 𝑧 ) = ( ℵ ‘ 𝑥 ) ) |
| 25 | alephord | ⊢ ( ( 𝑥 ∈ On ∧ 𝐴 ∈ On ) → ( 𝑥 ∈ 𝐴 ↔ ( ℵ ‘ 𝑥 ) ≺ ( ℵ ‘ 𝐴 ) ) ) | |
| 26 | 25 | ancoms | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝑥 ∈ 𝐴 ↔ ( ℵ ‘ 𝑥 ) ≺ ( ℵ ‘ 𝐴 ) ) ) |
| 27 | breq1 | ⊢ ( ( card ‘ 𝑧 ) = ( ℵ ‘ 𝑥 ) → ( ( card ‘ 𝑧 ) ≺ ( ℵ ‘ 𝐴 ) ↔ ( ℵ ‘ 𝑥 ) ≺ ( ℵ ‘ 𝐴 ) ) ) | |
| 28 | 14 | cardid | ⊢ ( card ‘ 𝑧 ) ≈ 𝑧 |
| 29 | sdomen1 | ⊢ ( ( card ‘ 𝑧 ) ≈ 𝑧 → ( ( card ‘ 𝑧 ) ≺ ( ℵ ‘ 𝐴 ) ↔ 𝑧 ≺ ( ℵ ‘ 𝐴 ) ) ) | |
| 30 | 28 29 | ax-mp | ⊢ ( ( card ‘ 𝑧 ) ≺ ( ℵ ‘ 𝐴 ) ↔ 𝑧 ≺ ( ℵ ‘ 𝐴 ) ) |
| 31 | 27 30 | bitr3di | ⊢ ( ( card ‘ 𝑧 ) = ( ℵ ‘ 𝑥 ) → ( ( ℵ ‘ 𝑥 ) ≺ ( ℵ ‘ 𝐴 ) ↔ 𝑧 ≺ ( ℵ ‘ 𝐴 ) ) ) |
| 32 | 26 31 | sylan9bb | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) ∧ ( card ‘ 𝑧 ) = ( ℵ ‘ 𝑥 ) ) → ( 𝑥 ∈ 𝐴 ↔ 𝑧 ≺ ( ℵ ‘ 𝐴 ) ) ) |
| 33 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( ℵ ‘ 𝑦 ) = ( ℵ ‘ 𝑥 ) ) | |
| 34 | 33 | breq1d | ⊢ ( 𝑦 = 𝑥 → ( ( ℵ ‘ 𝑦 ) ≺ 𝑧 ↔ ( ℵ ‘ 𝑥 ) ≺ 𝑧 ) ) |
| 35 | 34 | rspcv | ⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 → ( ℵ ‘ 𝑥 ) ≺ 𝑧 ) ) |
| 36 | sdomirr | ⊢ ¬ ( ℵ ‘ 𝑥 ) ≺ ( ℵ ‘ 𝑥 ) | |
| 37 | sdomen2 | ⊢ ( ( card ‘ 𝑧 ) ≈ 𝑧 → ( ( ℵ ‘ 𝑥 ) ≺ ( card ‘ 𝑧 ) ↔ ( ℵ ‘ 𝑥 ) ≺ 𝑧 ) ) | |
| 38 | 28 37 | ax-mp | ⊢ ( ( ℵ ‘ 𝑥 ) ≺ ( card ‘ 𝑧 ) ↔ ( ℵ ‘ 𝑥 ) ≺ 𝑧 ) |
| 39 | breq2 | ⊢ ( ( card ‘ 𝑧 ) = ( ℵ ‘ 𝑥 ) → ( ( ℵ ‘ 𝑥 ) ≺ ( card ‘ 𝑧 ) ↔ ( ℵ ‘ 𝑥 ) ≺ ( ℵ ‘ 𝑥 ) ) ) | |
| 40 | 38 39 | bitr3id | ⊢ ( ( card ‘ 𝑧 ) = ( ℵ ‘ 𝑥 ) → ( ( ℵ ‘ 𝑥 ) ≺ 𝑧 ↔ ( ℵ ‘ 𝑥 ) ≺ ( ℵ ‘ 𝑥 ) ) ) |
| 41 | 36 40 | mtbiri | ⊢ ( ( card ‘ 𝑧 ) = ( ℵ ‘ 𝑥 ) → ¬ ( ℵ ‘ 𝑥 ) ≺ 𝑧 ) |
| 42 | 35 41 | nsyli | ⊢ ( 𝑥 ∈ 𝐴 → ( ( card ‘ 𝑧 ) = ( ℵ ‘ 𝑥 ) → ¬ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) |
| 43 | 42 | com12 | ⊢ ( ( card ‘ 𝑧 ) = ( ℵ ‘ 𝑥 ) → ( 𝑥 ∈ 𝐴 → ¬ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) |
| 44 | 43 | adantl | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) ∧ ( card ‘ 𝑧 ) = ( ℵ ‘ 𝑥 ) ) → ( 𝑥 ∈ 𝐴 → ¬ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) |
| 45 | 32 44 | sylbird | ⊢ ( ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) ∧ ( card ‘ 𝑧 ) = ( ℵ ‘ 𝑥 ) ) → ( 𝑧 ≺ ( ℵ ‘ 𝐴 ) → ¬ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) |
| 46 | 45 | rexlimdva2 | ⊢ ( 𝐴 ∈ On → ( ∃ 𝑥 ∈ On ( card ‘ 𝑧 ) = ( ℵ ‘ 𝑥 ) → ( 𝑧 ≺ ( ℵ ‘ 𝐴 ) → ¬ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) ) |
| 47 | 24 46 | syl5 | ⊢ ( 𝐴 ∈ On → ( ω ⊆ ( card ‘ 𝑧 ) → ( 𝑧 ≺ ( ℵ ‘ 𝐴 ) → ¬ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) ) |
| 48 | 21 47 | biimtrid | ⊢ ( 𝐴 ∈ On → ( ω ≼ 𝑧 → ( 𝑧 ≺ ( ℵ ‘ 𝐴 ) → ¬ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) ) |
| 49 | 48 | adantr | ⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( ω ≼ 𝑧 → ( 𝑧 ≺ ( ℵ ‘ 𝐴 ) → ¬ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) ) |
| 50 | ne0i | ⊢ ( ∅ ∈ 𝐴 → 𝐴 ≠ ∅ ) | |
| 51 | onelon | ⊢ ( ( 𝐴 ∈ On ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ On ) | |
| 52 | alephgeom | ⊢ ( 𝑦 ∈ On ↔ ω ⊆ ( ℵ ‘ 𝑦 ) ) | |
| 53 | alephon | ⊢ ( ℵ ‘ 𝑦 ) ∈ On | |
| 54 | ssdomg | ⊢ ( ( ℵ ‘ 𝑦 ) ∈ On → ( ω ⊆ ( ℵ ‘ 𝑦 ) → ω ≼ ( ℵ ‘ 𝑦 ) ) ) | |
| 55 | 53 54 | ax-mp | ⊢ ( ω ⊆ ( ℵ ‘ 𝑦 ) → ω ≼ ( ℵ ‘ 𝑦 ) ) |
| 56 | 52 55 | sylbi | ⊢ ( 𝑦 ∈ On → ω ≼ ( ℵ ‘ 𝑦 ) ) |
| 57 | domtr | ⊢ ( ( 𝑧 ≼ ω ∧ ω ≼ ( ℵ ‘ 𝑦 ) ) → 𝑧 ≼ ( ℵ ‘ 𝑦 ) ) | |
| 58 | 56 57 | sylan2 | ⊢ ( ( 𝑧 ≼ ω ∧ 𝑦 ∈ On ) → 𝑧 ≼ ( ℵ ‘ 𝑦 ) ) |
| 59 | domnsym | ⊢ ( 𝑧 ≼ ( ℵ ‘ 𝑦 ) → ¬ ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) | |
| 60 | 58 59 | syl | ⊢ ( ( 𝑧 ≼ ω ∧ 𝑦 ∈ On ) → ¬ ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) |
| 61 | 51 60 | sylan2 | ⊢ ( ( 𝑧 ≼ ω ∧ ( 𝐴 ∈ On ∧ 𝑦 ∈ 𝐴 ) ) → ¬ ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) |
| 62 | 61 | expr | ⊢ ( ( 𝑧 ≼ ω ∧ 𝐴 ∈ On ) → ( 𝑦 ∈ 𝐴 → ¬ ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) |
| 63 | 62 | ralrimiv | ⊢ ( ( 𝑧 ≼ ω ∧ 𝐴 ∈ On ) → ∀ 𝑦 ∈ 𝐴 ¬ ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) |
| 64 | r19.2z | ⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑦 ∈ 𝐴 ¬ ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) → ∃ 𝑦 ∈ 𝐴 ¬ ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) | |
| 65 | 64 | ex | ⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑦 ∈ 𝐴 ¬ ( ℵ ‘ 𝑦 ) ≺ 𝑧 → ∃ 𝑦 ∈ 𝐴 ¬ ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) |
| 66 | 50 63 65 | syl2im | ⊢ ( ∅ ∈ 𝐴 → ( ( 𝑧 ≼ ω ∧ 𝐴 ∈ On ) → ∃ 𝑦 ∈ 𝐴 ¬ ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) |
| 67 | rexnal | ⊢ ( ∃ 𝑦 ∈ 𝐴 ¬ ( ℵ ‘ 𝑦 ) ≺ 𝑧 ↔ ¬ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) | |
| 68 | 66 67 | imbitrdi | ⊢ ( ∅ ∈ 𝐴 → ( ( 𝑧 ≼ ω ∧ 𝐴 ∈ On ) → ¬ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) |
| 69 | 68 | com12 | ⊢ ( ( 𝑧 ≼ ω ∧ 𝐴 ∈ On ) → ( ∅ ∈ 𝐴 → ¬ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) |
| 70 | 69 | expimpd | ⊢ ( 𝑧 ≼ ω → ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ¬ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) |
| 71 | 70 | a1d | ⊢ ( 𝑧 ≼ ω → ( 𝑧 ≺ ( ℵ ‘ 𝐴 ) → ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ¬ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) ) |
| 72 | 71 | com3r | ⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( 𝑧 ≼ ω → ( 𝑧 ≺ ( ℵ ‘ 𝐴 ) → ¬ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) ) |
| 73 | 49 72 | jaod | ⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( ( ω ≼ 𝑧 ∨ 𝑧 ≼ ω ) → ( 𝑧 ≺ ( ℵ ‘ 𝐴 ) → ¬ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) ) |
| 74 | 16 73 | mpi | ⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( 𝑧 ≺ ( ℵ ‘ 𝐴 ) → ¬ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) |
| 75 | breq2 | ⊢ ( 𝑥 = 𝑧 → ( ( ℵ ‘ 𝑦 ) ≺ 𝑥 ↔ ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) | |
| 76 | 75 | ralbidv | ⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑥 ↔ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) |
| 77 | 76 | elrab | ⊢ ( 𝑧 ∈ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑥 } ↔ ( 𝑧 ∈ On ∧ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) ) |
| 78 | 77 | simprbi | ⊢ ( 𝑧 ∈ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑥 } → ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 ) |
| 79 | 78 | con3i | ⊢ ( ¬ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑧 → ¬ 𝑧 ∈ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑥 } ) |
| 80 | 12 74 79 | syl56 | ⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( 𝑧 ∈ ( ℵ ‘ 𝐴 ) → ¬ 𝑧 ∈ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑥 } ) ) |
| 81 | 80 | ralrimiv | ⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ¬ 𝑧 ∈ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑥 } ) |
| 82 | ssrab2 | ⊢ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑥 } ⊆ On | |
| 83 | oneqmini | ⊢ ( { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑥 } ⊆ On → ( ( ( ℵ ‘ 𝐴 ) ∈ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑥 } ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ¬ 𝑧 ∈ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑥 } ) → ( ℵ ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑥 } ) ) | |
| 84 | 82 83 | ax-mp | ⊢ ( ( ( ℵ ‘ 𝐴 ) ∈ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑥 } ∧ ∀ 𝑧 ∈ ( ℵ ‘ 𝐴 ) ¬ 𝑧 ∈ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑥 } ) → ( ℵ ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑥 } ) |
| 85 | 8 81 84 | syl2an2r | ⊢ ( ( 𝐴 ∈ On ∧ ∅ ∈ 𝐴 ) → ( ℵ ‘ 𝐴 ) = ∩ { 𝑥 ∈ On ∣ ∀ 𝑦 ∈ 𝐴 ( ℵ ‘ 𝑦 ) ≺ 𝑥 } ) |