This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering property of the aleph function. (Contributed by NM, 26-Oct-2003) (Revised by Mario Carneiro, 9-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephord | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ 𝐵 ↔ ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephordi | ⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝐵 ) ) ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ 𝐵 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝐵 ) ) ) |
| 3 | brsdom | ⊢ ( ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝐵 ) ↔ ( ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ∧ ¬ ( ℵ ‘ 𝐴 ) ≈ ( ℵ ‘ 𝐵 ) ) ) | |
| 4 | alephon | ⊢ ( ℵ ‘ 𝐴 ) ∈ On | |
| 5 | alephon | ⊢ ( ℵ ‘ 𝐵 ) ∈ On | |
| 6 | domtriord | ⊢ ( ( ( ℵ ‘ 𝐴 ) ∈ On ∧ ( ℵ ‘ 𝐵 ) ∈ On ) → ( ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ↔ ¬ ( ℵ ‘ 𝐵 ) ≺ ( ℵ ‘ 𝐴 ) ) ) | |
| 7 | 4 5 6 | mp2an | ⊢ ( ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ↔ ¬ ( ℵ ‘ 𝐵 ) ≺ ( ℵ ‘ 𝐴 ) ) |
| 8 | alephordi | ⊢ ( 𝐴 ∈ On → ( 𝐵 ∈ 𝐴 → ( ℵ ‘ 𝐵 ) ≺ ( ℵ ‘ 𝐴 ) ) ) | |
| 9 | 8 | con3d | ⊢ ( 𝐴 ∈ On → ( ¬ ( ℵ ‘ 𝐵 ) ≺ ( ℵ ‘ 𝐴 ) → ¬ 𝐵 ∈ 𝐴 ) ) |
| 10 | 7 9 | biimtrid | ⊢ ( 𝐴 ∈ On → ( ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) → ¬ 𝐵 ∈ 𝐴 ) ) |
| 11 | 10 | adantr | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) → ¬ 𝐵 ∈ 𝐴 ) ) |
| 12 | ontri1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ⊆ 𝐵 ↔ ¬ 𝐵 ∈ 𝐴 ) ) | |
| 13 | 11 12 | sylibrd | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) → 𝐴 ⊆ 𝐵 ) ) |
| 14 | fveq2 | ⊢ ( 𝐴 = 𝐵 → ( ℵ ‘ 𝐴 ) = ( ℵ ‘ 𝐵 ) ) | |
| 15 | eqeng | ⊢ ( ( ℵ ‘ 𝐴 ) ∈ On → ( ( ℵ ‘ 𝐴 ) = ( ℵ ‘ 𝐵 ) → ( ℵ ‘ 𝐴 ) ≈ ( ℵ ‘ 𝐵 ) ) ) | |
| 16 | 4 14 15 | mpsyl | ⊢ ( 𝐴 = 𝐵 → ( ℵ ‘ 𝐴 ) ≈ ( ℵ ‘ 𝐵 ) ) |
| 17 | 16 | necon3bi | ⊢ ( ¬ ( ℵ ‘ 𝐴 ) ≈ ( ℵ ‘ 𝐵 ) → 𝐴 ≠ 𝐵 ) |
| 18 | 13 17 | anim12d1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ∧ ¬ ( ℵ ‘ 𝐴 ) ≈ ( ℵ ‘ 𝐵 ) ) → ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ) ) |
| 19 | onelpss | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ) ) | |
| 20 | 18 19 | sylibrd | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝐵 ) ∧ ¬ ( ℵ ‘ 𝐴 ) ≈ ( ℵ ‘ 𝐵 ) ) → 𝐴 ∈ 𝐵 ) ) |
| 21 | 3 20 | biimtrid | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝐵 ) → 𝐴 ∈ 𝐵 ) ) |
| 22 | 2 21 | impbid | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ 𝐵 ↔ ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝐵 ) ) ) |