This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A way to show that an ordinal number equals the minimum of a collection of ordinal numbers: it must be in the collection, and it must not be larger than any member of the collection. (Contributed by NM, 14-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oneqmini | ⊢ ( 𝐵 ⊆ On → ( ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) → 𝐴 = ∩ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssint | ⊢ ( 𝐴 ⊆ ∩ 𝐵 ↔ ∀ 𝑥 ∈ 𝐵 𝐴 ⊆ 𝑥 ) | |
| 2 | ssel | ⊢ ( 𝐵 ⊆ On → ( 𝐴 ∈ 𝐵 → 𝐴 ∈ On ) ) | |
| 3 | ssel | ⊢ ( 𝐵 ⊆ On → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ On ) ) | |
| 4 | 2 3 | anim12d | ⊢ ( 𝐵 ⊆ On → ( ( 𝐴 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) ) ) |
| 5 | ontri1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐴 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝐴 ) ) | |
| 6 | 4 5 | syl6 | ⊢ ( 𝐵 ⊆ On → ( ( 𝐴 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐴 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝐴 ) ) ) |
| 7 | 6 | expdimp | ⊢ ( ( 𝐵 ⊆ On ∧ 𝐴 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐵 → ( 𝐴 ⊆ 𝑥 ↔ ¬ 𝑥 ∈ 𝐴 ) ) ) |
| 8 | 7 | pm5.74d | ⊢ ( ( 𝐵 ⊆ On ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐵 → 𝐴 ⊆ 𝑥 ) ↔ ( 𝑥 ∈ 𝐵 → ¬ 𝑥 ∈ 𝐴 ) ) ) |
| 9 | con2b | ⊢ ( ( 𝑥 ∈ 𝐵 → ¬ 𝑥 ∈ 𝐴 ) ↔ ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ) | |
| 10 | 8 9 | bitrdi | ⊢ ( ( 𝐵 ⊆ On ∧ 𝐴 ∈ 𝐵 ) → ( ( 𝑥 ∈ 𝐵 → 𝐴 ⊆ 𝑥 ) ↔ ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ) ) |
| 11 | 10 | ralbidv2 | ⊢ ( ( 𝐵 ⊆ On ∧ 𝐴 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 𝐴 ⊆ 𝑥 ↔ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) ) |
| 12 | 1 11 | bitrid | ⊢ ( ( 𝐵 ⊆ On ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 ⊆ ∩ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) ) |
| 13 | 12 | biimprd | ⊢ ( ( 𝐵 ⊆ On ∧ 𝐴 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 → 𝐴 ⊆ ∩ 𝐵 ) ) |
| 14 | 13 | expimpd | ⊢ ( 𝐵 ⊆ On → ( ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) → 𝐴 ⊆ ∩ 𝐵 ) ) |
| 15 | intss1 | ⊢ ( 𝐴 ∈ 𝐵 → ∩ 𝐵 ⊆ 𝐴 ) | |
| 16 | 15 | a1i | ⊢ ( 𝐵 ⊆ On → ( 𝐴 ∈ 𝐵 → ∩ 𝐵 ⊆ 𝐴 ) ) |
| 17 | 16 | adantrd | ⊢ ( 𝐵 ⊆ On → ( ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) → ∩ 𝐵 ⊆ 𝐴 ) ) |
| 18 | 14 17 | jcad | ⊢ ( 𝐵 ⊆ On → ( ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) → ( 𝐴 ⊆ ∩ 𝐵 ∧ ∩ 𝐵 ⊆ 𝐴 ) ) ) |
| 19 | eqss | ⊢ ( 𝐴 = ∩ 𝐵 ↔ ( 𝐴 ⊆ ∩ 𝐵 ∧ ∩ 𝐵 ⊆ 𝐴 ) ) | |
| 20 | 18 19 | imbitrrdi | ⊢ ( 𝐵 ⊆ On → ( ( 𝐴 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) → 𝐴 = ∩ 𝐵 ) ) |