This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Strict ordering property of the aleph function. (Contributed by Mario Carneiro, 2-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephordi | ⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 | ⊢ ( 𝑥 = ∅ → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ ∅ ) ) | |
| 2 | fveq2 | ⊢ ( 𝑥 = ∅ → ( ℵ ‘ 𝑥 ) = ( ℵ ‘ ∅ ) ) | |
| 3 | 2 | breq2d | ⊢ ( 𝑥 = ∅ → ( ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑥 ) ↔ ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ ∅ ) ) ) |
| 4 | 1 3 | imbi12d | ⊢ ( 𝑥 = ∅ → ( ( 𝐴 ∈ 𝑥 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑥 ) ) ↔ ( 𝐴 ∈ ∅ → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ ∅ ) ) ) ) |
| 5 | eleq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑦 ) ) | |
| 6 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( ℵ ‘ 𝑥 ) = ( ℵ ‘ 𝑦 ) ) | |
| 7 | 6 | breq2d | ⊢ ( 𝑥 = 𝑦 → ( ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑥 ) ↔ ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑦 ) ) ) |
| 8 | 5 7 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∈ 𝑥 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑥 ) ) ↔ ( 𝐴 ∈ 𝑦 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑦 ) ) ) ) |
| 9 | eleq2 | ⊢ ( 𝑥 = suc 𝑦 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ suc 𝑦 ) ) | |
| 10 | fveq2 | ⊢ ( 𝑥 = suc 𝑦 → ( ℵ ‘ 𝑥 ) = ( ℵ ‘ suc 𝑦 ) ) | |
| 11 | 10 | breq2d | ⊢ ( 𝑥 = suc 𝑦 → ( ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑥 ) ↔ ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝑦 ) ) ) |
| 12 | 9 11 | imbi12d | ⊢ ( 𝑥 = suc 𝑦 → ( ( 𝐴 ∈ 𝑥 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑥 ) ) ↔ ( 𝐴 ∈ suc 𝑦 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝑦 ) ) ) ) |
| 13 | eleq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐵 ) ) | |
| 14 | fveq2 | ⊢ ( 𝑥 = 𝐵 → ( ℵ ‘ 𝑥 ) = ( ℵ ‘ 𝐵 ) ) | |
| 15 | 14 | breq2d | ⊢ ( 𝑥 = 𝐵 → ( ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑥 ) ↔ ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝐵 ) ) ) |
| 16 | 13 15 | imbi12d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ∈ 𝑥 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑥 ) ) ↔ ( 𝐴 ∈ 𝐵 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝐵 ) ) ) ) |
| 17 | noel | ⊢ ¬ 𝐴 ∈ ∅ | |
| 18 | 17 | pm2.21i | ⊢ ( 𝐴 ∈ ∅ → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ ∅ ) ) |
| 19 | vex | ⊢ 𝑦 ∈ V | |
| 20 | 19 | elsuc2 | ⊢ ( 𝐴 ∈ suc 𝑦 ↔ ( 𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ) ) |
| 21 | alephordilem1 | ⊢ ( 𝑦 ∈ On → ( ℵ ‘ 𝑦 ) ≺ ( ℵ ‘ suc 𝑦 ) ) | |
| 22 | sdomtr | ⊢ ( ( ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑦 ) ∧ ( ℵ ‘ 𝑦 ) ≺ ( ℵ ‘ suc 𝑦 ) ) → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝑦 ) ) | |
| 23 | 21 22 | sylan2 | ⊢ ( ( ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑦 ) ∧ 𝑦 ∈ On ) → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝑦 ) ) |
| 24 | 23 | expcom | ⊢ ( 𝑦 ∈ On → ( ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑦 ) → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝑦 ) ) ) |
| 25 | 24 | imim2d | ⊢ ( 𝑦 ∈ On → ( ( 𝐴 ∈ 𝑦 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑦 ) ) → ( 𝐴 ∈ 𝑦 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝑦 ) ) ) ) |
| 26 | 25 | com23 | ⊢ ( 𝑦 ∈ On → ( 𝐴 ∈ 𝑦 → ( ( 𝐴 ∈ 𝑦 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑦 ) ) → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝑦 ) ) ) ) |
| 27 | fveq2 | ⊢ ( 𝐴 = 𝑦 → ( ℵ ‘ 𝐴 ) = ( ℵ ‘ 𝑦 ) ) | |
| 28 | 27 | breq1d | ⊢ ( 𝐴 = 𝑦 → ( ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝑦 ) ↔ ( ℵ ‘ 𝑦 ) ≺ ( ℵ ‘ suc 𝑦 ) ) ) |
| 29 | 21 28 | imbitrrid | ⊢ ( 𝐴 = 𝑦 → ( 𝑦 ∈ On → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝑦 ) ) ) |
| 30 | 29 | a1d | ⊢ ( 𝐴 = 𝑦 → ( ( 𝐴 ∈ 𝑦 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑦 ) ) → ( 𝑦 ∈ On → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝑦 ) ) ) ) |
| 31 | 30 | com3r | ⊢ ( 𝑦 ∈ On → ( 𝐴 = 𝑦 → ( ( 𝐴 ∈ 𝑦 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑦 ) ) → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝑦 ) ) ) ) |
| 32 | 26 31 | jaod | ⊢ ( 𝑦 ∈ On → ( ( 𝐴 ∈ 𝑦 ∨ 𝐴 = 𝑦 ) → ( ( 𝐴 ∈ 𝑦 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑦 ) ) → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝑦 ) ) ) ) |
| 33 | 20 32 | biimtrid | ⊢ ( 𝑦 ∈ On → ( 𝐴 ∈ suc 𝑦 → ( ( 𝐴 ∈ 𝑦 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑦 ) ) → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝑦 ) ) ) ) |
| 34 | 33 | com23 | ⊢ ( 𝑦 ∈ On → ( ( 𝐴 ∈ 𝑦 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑦 ) ) → ( 𝐴 ∈ suc 𝑦 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝑦 ) ) ) ) |
| 35 | fvexd | ⊢ ( Lim 𝑥 → ( ℵ ‘ 𝑥 ) ∈ V ) | |
| 36 | fveq2 | ⊢ ( 𝑤 = 𝐴 → ( ℵ ‘ 𝑤 ) = ( ℵ ‘ 𝐴 ) ) | |
| 37 | 36 | ssiun2s | ⊢ ( 𝐴 ∈ 𝑥 → ( ℵ ‘ 𝐴 ) ⊆ ∪ 𝑤 ∈ 𝑥 ( ℵ ‘ 𝑤 ) ) |
| 38 | vex | ⊢ 𝑥 ∈ V | |
| 39 | alephlim | ⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → ( ℵ ‘ 𝑥 ) = ∪ 𝑤 ∈ 𝑥 ( ℵ ‘ 𝑤 ) ) | |
| 40 | 38 39 | mpan | ⊢ ( Lim 𝑥 → ( ℵ ‘ 𝑥 ) = ∪ 𝑤 ∈ 𝑥 ( ℵ ‘ 𝑤 ) ) |
| 41 | 40 | sseq2d | ⊢ ( Lim 𝑥 → ( ( ℵ ‘ 𝐴 ) ⊆ ( ℵ ‘ 𝑥 ) ↔ ( ℵ ‘ 𝐴 ) ⊆ ∪ 𝑤 ∈ 𝑥 ( ℵ ‘ 𝑤 ) ) ) |
| 42 | 37 41 | imbitrrid | ⊢ ( Lim 𝑥 → ( 𝐴 ∈ 𝑥 → ( ℵ ‘ 𝐴 ) ⊆ ( ℵ ‘ 𝑥 ) ) ) |
| 43 | ssdomg | ⊢ ( ( ℵ ‘ 𝑥 ) ∈ V → ( ( ℵ ‘ 𝐴 ) ⊆ ( ℵ ‘ 𝑥 ) → ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝑥 ) ) ) | |
| 44 | 35 42 43 | sylsyld | ⊢ ( Lim 𝑥 → ( 𝐴 ∈ 𝑥 → ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝑥 ) ) ) |
| 45 | limsuc | ⊢ ( Lim 𝑥 → ( 𝐴 ∈ 𝑥 ↔ suc 𝐴 ∈ 𝑥 ) ) | |
| 46 | fveq2 | ⊢ ( 𝑤 = suc 𝐴 → ( ℵ ‘ 𝑤 ) = ( ℵ ‘ suc 𝐴 ) ) | |
| 47 | 46 | ssiun2s | ⊢ ( suc 𝐴 ∈ 𝑥 → ( ℵ ‘ suc 𝐴 ) ⊆ ∪ 𝑤 ∈ 𝑥 ( ℵ ‘ 𝑤 ) ) |
| 48 | 40 | sseq2d | ⊢ ( Lim 𝑥 → ( ( ℵ ‘ suc 𝐴 ) ⊆ ( ℵ ‘ 𝑥 ) ↔ ( ℵ ‘ suc 𝐴 ) ⊆ ∪ 𝑤 ∈ 𝑥 ( ℵ ‘ 𝑤 ) ) ) |
| 49 | 47 48 | imbitrrid | ⊢ ( Lim 𝑥 → ( suc 𝐴 ∈ 𝑥 → ( ℵ ‘ suc 𝐴 ) ⊆ ( ℵ ‘ 𝑥 ) ) ) |
| 50 | ssdomg | ⊢ ( ( ℵ ‘ 𝑥 ) ∈ V → ( ( ℵ ‘ suc 𝐴 ) ⊆ ( ℵ ‘ 𝑥 ) → ( ℵ ‘ suc 𝐴 ) ≼ ( ℵ ‘ 𝑥 ) ) ) | |
| 51 | 35 49 50 | sylsyld | ⊢ ( Lim 𝑥 → ( suc 𝐴 ∈ 𝑥 → ( ℵ ‘ suc 𝐴 ) ≼ ( ℵ ‘ 𝑥 ) ) ) |
| 52 | 45 51 | sylbid | ⊢ ( Lim 𝑥 → ( 𝐴 ∈ 𝑥 → ( ℵ ‘ suc 𝐴 ) ≼ ( ℵ ‘ 𝑥 ) ) ) |
| 53 | 52 | imp | ⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ 𝑥 ) → ( ℵ ‘ suc 𝐴 ) ≼ ( ℵ ‘ 𝑥 ) ) |
| 54 | domnsym | ⊢ ( ( ℵ ‘ suc 𝐴 ) ≼ ( ℵ ‘ 𝑥 ) → ¬ ( ℵ ‘ 𝑥 ) ≺ ( ℵ ‘ suc 𝐴 ) ) | |
| 55 | 53 54 | syl | ⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ 𝑥 ) → ¬ ( ℵ ‘ 𝑥 ) ≺ ( ℵ ‘ suc 𝐴 ) ) |
| 56 | limelon | ⊢ ( ( 𝑥 ∈ V ∧ Lim 𝑥 ) → 𝑥 ∈ On ) | |
| 57 | 38 56 | mpan | ⊢ ( Lim 𝑥 → 𝑥 ∈ On ) |
| 58 | onelon | ⊢ ( ( 𝑥 ∈ On ∧ 𝐴 ∈ 𝑥 ) → 𝐴 ∈ On ) | |
| 59 | 57 58 | sylan | ⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ 𝑥 ) → 𝐴 ∈ On ) |
| 60 | ensym | ⊢ ( ( ℵ ‘ 𝐴 ) ≈ ( ℵ ‘ 𝑥 ) → ( ℵ ‘ 𝑥 ) ≈ ( ℵ ‘ 𝐴 ) ) | |
| 61 | alephordilem1 | ⊢ ( 𝐴 ∈ On → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐴 ) ) | |
| 62 | ensdomtr | ⊢ ( ( ( ℵ ‘ 𝑥 ) ≈ ( ℵ ‘ 𝐴 ) ∧ ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐴 ) ) → ( ℵ ‘ 𝑥 ) ≺ ( ℵ ‘ suc 𝐴 ) ) | |
| 63 | 62 | ex | ⊢ ( ( ℵ ‘ 𝑥 ) ≈ ( ℵ ‘ 𝐴 ) → ( ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ suc 𝐴 ) → ( ℵ ‘ 𝑥 ) ≺ ( ℵ ‘ suc 𝐴 ) ) ) |
| 64 | 60 61 63 | syl2im | ⊢ ( ( ℵ ‘ 𝐴 ) ≈ ( ℵ ‘ 𝑥 ) → ( 𝐴 ∈ On → ( ℵ ‘ 𝑥 ) ≺ ( ℵ ‘ suc 𝐴 ) ) ) |
| 65 | 59 64 | syl5com | ⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ 𝑥 ) → ( ( ℵ ‘ 𝐴 ) ≈ ( ℵ ‘ 𝑥 ) → ( ℵ ‘ 𝑥 ) ≺ ( ℵ ‘ suc 𝐴 ) ) ) |
| 66 | 55 65 | mtod | ⊢ ( ( Lim 𝑥 ∧ 𝐴 ∈ 𝑥 ) → ¬ ( ℵ ‘ 𝐴 ) ≈ ( ℵ ‘ 𝑥 ) ) |
| 67 | 66 | ex | ⊢ ( Lim 𝑥 → ( 𝐴 ∈ 𝑥 → ¬ ( ℵ ‘ 𝐴 ) ≈ ( ℵ ‘ 𝑥 ) ) ) |
| 68 | 44 67 | jcad | ⊢ ( Lim 𝑥 → ( 𝐴 ∈ 𝑥 → ( ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝑥 ) ∧ ¬ ( ℵ ‘ 𝐴 ) ≈ ( ℵ ‘ 𝑥 ) ) ) ) |
| 69 | brsdom | ⊢ ( ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑥 ) ↔ ( ( ℵ ‘ 𝐴 ) ≼ ( ℵ ‘ 𝑥 ) ∧ ¬ ( ℵ ‘ 𝐴 ) ≈ ( ℵ ‘ 𝑥 ) ) ) | |
| 70 | 68 69 | imbitrrdi | ⊢ ( Lim 𝑥 → ( 𝐴 ∈ 𝑥 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑥 ) ) ) |
| 71 | 70 | a1d | ⊢ ( Lim 𝑥 → ( ∀ 𝑦 ∈ 𝑥 ( 𝐴 ∈ 𝑦 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑦 ) ) → ( 𝐴 ∈ 𝑥 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝑥 ) ) ) ) |
| 72 | 4 8 12 16 18 34 71 | tfinds | ⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ 𝐵 → ( ℵ ‘ 𝐴 ) ≺ ( ℵ ‘ 𝐵 ) ) ) |