This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty set that is a subset of its union is infinite. This version is proved from ax-ac . See dominf for a version proved from ax-cc . (Contributed by NM, 25-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dominfac.1 | ⊢ 𝐴 ∈ V | |
| Assertion | dominfac | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ∪ 𝐴 ) → ω ≼ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dominfac.1 | ⊢ 𝐴 ∈ V | |
| 2 | neeq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ≠ ∅ ↔ 𝐴 ≠ ∅ ) ) | |
| 3 | id | ⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) | |
| 4 | unieq | ⊢ ( 𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴 ) | |
| 5 | 3 4 | sseq12d | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ⊆ ∪ 𝑥 ↔ 𝐴 ⊆ ∪ 𝐴 ) ) |
| 6 | 2 5 | anbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) ↔ ( 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ∪ 𝐴 ) ) ) |
| 7 | breq2 | ⊢ ( 𝑥 = 𝐴 → ( ω ≼ 𝑥 ↔ ω ≼ 𝐴 ) ) | |
| 8 | 6 7 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ω ≼ 𝑥 ) ↔ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ∪ 𝐴 ) → ω ≼ 𝐴 ) ) ) |
| 9 | eqid | ⊢ ( 𝑦 ∈ V ↦ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } ) = ( 𝑦 ∈ V ↦ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } ) | |
| 10 | eqid | ⊢ ( rec ( ( 𝑦 ∈ V ↦ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } ) , ∅ ) ↾ ω ) = ( rec ( ( 𝑦 ∈ V ↦ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } ) , ∅ ) ↾ ω ) | |
| 11 | 9 10 1 1 | inf3lem6 | ⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ( rec ( ( 𝑦 ∈ V ↦ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } ) , ∅ ) ↾ ω ) : ω –1-1→ 𝒫 𝑥 ) |
| 12 | vpwex | ⊢ 𝒫 𝑥 ∈ V | |
| 13 | 12 | f1dom | ⊢ ( ( rec ( ( 𝑦 ∈ V ↦ { 𝑤 ∈ 𝑥 ∣ ( 𝑤 ∩ 𝑥 ) ⊆ 𝑦 } ) , ∅ ) ↾ ω ) : ω –1-1→ 𝒫 𝑥 → ω ≼ 𝒫 𝑥 ) |
| 14 | pwfi | ⊢ ( 𝑥 ∈ Fin ↔ 𝒫 𝑥 ∈ Fin ) | |
| 15 | 14 | biimpi | ⊢ ( 𝑥 ∈ Fin → 𝒫 𝑥 ∈ Fin ) |
| 16 | isfinite | ⊢ ( 𝑥 ∈ Fin ↔ 𝑥 ≺ ω ) | |
| 17 | isfinite | ⊢ ( 𝒫 𝑥 ∈ Fin ↔ 𝒫 𝑥 ≺ ω ) | |
| 18 | 15 16 17 | 3imtr3i | ⊢ ( 𝑥 ≺ ω → 𝒫 𝑥 ≺ ω ) |
| 19 | 18 | con3i | ⊢ ( ¬ 𝒫 𝑥 ≺ ω → ¬ 𝑥 ≺ ω ) |
| 20 | omex | ⊢ ω ∈ V | |
| 21 | domtri | ⊢ ( ( ω ∈ V ∧ 𝒫 𝑥 ∈ V ) → ( ω ≼ 𝒫 𝑥 ↔ ¬ 𝒫 𝑥 ≺ ω ) ) | |
| 22 | 20 12 21 | mp2an | ⊢ ( ω ≼ 𝒫 𝑥 ↔ ¬ 𝒫 𝑥 ≺ ω ) |
| 23 | vex | ⊢ 𝑥 ∈ V | |
| 24 | domtri | ⊢ ( ( ω ∈ V ∧ 𝑥 ∈ V ) → ( ω ≼ 𝑥 ↔ ¬ 𝑥 ≺ ω ) ) | |
| 25 | 20 23 24 | mp2an | ⊢ ( ω ≼ 𝑥 ↔ ¬ 𝑥 ≺ ω ) |
| 26 | 19 22 25 | 3imtr4i | ⊢ ( ω ≼ 𝒫 𝑥 → ω ≼ 𝑥 ) |
| 27 | 11 13 26 | 3syl | ⊢ ( ( 𝑥 ≠ ∅ ∧ 𝑥 ⊆ ∪ 𝑥 ) → ω ≼ 𝑥 ) |
| 28 | 1 8 27 | vtocl | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ⊆ ∪ 𝐴 ) → ω ≼ 𝐴 ) |