This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An alternate way to express the value of the aleph function for nonzero arguments. Theorem 64 of Suppes p. 229. (Contributed by NM, 15-Nov-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephval2 | |- ( ( A e. On /\ (/) e. A ) -> ( aleph ` A ) = |^| { x e. On | A. y e. A ( aleph ` y ) ~< x } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephordi | |- ( A e. On -> ( y e. A -> ( aleph ` y ) ~< ( aleph ` A ) ) ) |
|
| 2 | 1 | ralrimiv | |- ( A e. On -> A. y e. A ( aleph ` y ) ~< ( aleph ` A ) ) |
| 3 | alephon | |- ( aleph ` A ) e. On |
|
| 4 | 2 3 | jctil | |- ( A e. On -> ( ( aleph ` A ) e. On /\ A. y e. A ( aleph ` y ) ~< ( aleph ` A ) ) ) |
| 5 | breq2 | |- ( x = ( aleph ` A ) -> ( ( aleph ` y ) ~< x <-> ( aleph ` y ) ~< ( aleph ` A ) ) ) |
|
| 6 | 5 | ralbidv | |- ( x = ( aleph ` A ) -> ( A. y e. A ( aleph ` y ) ~< x <-> A. y e. A ( aleph ` y ) ~< ( aleph ` A ) ) ) |
| 7 | 6 | elrab | |- ( ( aleph ` A ) e. { x e. On | A. y e. A ( aleph ` y ) ~< x } <-> ( ( aleph ` A ) e. On /\ A. y e. A ( aleph ` y ) ~< ( aleph ` A ) ) ) |
| 8 | 4 7 | sylibr | |- ( A e. On -> ( aleph ` A ) e. { x e. On | A. y e. A ( aleph ` y ) ~< x } ) |
| 9 | cardsdomelir | |- ( z e. ( card ` ( aleph ` A ) ) -> z ~< ( aleph ` A ) ) |
|
| 10 | alephcard | |- ( card ` ( aleph ` A ) ) = ( aleph ` A ) |
|
| 11 | 10 | eqcomi | |- ( aleph ` A ) = ( card ` ( aleph ` A ) ) |
| 12 | 9 11 | eleq2s | |- ( z e. ( aleph ` A ) -> z ~< ( aleph ` A ) ) |
| 13 | omex | |- _om e. _V |
|
| 14 | vex | |- z e. _V |
|
| 15 | entri3 | |- ( ( _om e. _V /\ z e. _V ) -> ( _om ~<_ z \/ z ~<_ _om ) ) |
|
| 16 | 13 14 15 | mp2an | |- ( _om ~<_ z \/ z ~<_ _om ) |
| 17 | carddom | |- ( ( _om e. _V /\ z e. _V ) -> ( ( card ` _om ) C_ ( card ` z ) <-> _om ~<_ z ) ) |
|
| 18 | 13 14 17 | mp2an | |- ( ( card ` _om ) C_ ( card ` z ) <-> _om ~<_ z ) |
| 19 | cardom | |- ( card ` _om ) = _om |
|
| 20 | 19 | sseq1i | |- ( ( card ` _om ) C_ ( card ` z ) <-> _om C_ ( card ` z ) ) |
| 21 | 18 20 | bitr3i | |- ( _om ~<_ z <-> _om C_ ( card ` z ) ) |
| 22 | cardidm | |- ( card ` ( card ` z ) ) = ( card ` z ) |
|
| 23 | cardalephex | |- ( _om C_ ( card ` z ) -> ( ( card ` ( card ` z ) ) = ( card ` z ) <-> E. x e. On ( card ` z ) = ( aleph ` x ) ) ) |
|
| 24 | 22 23 | mpbii | |- ( _om C_ ( card ` z ) -> E. x e. On ( card ` z ) = ( aleph ` x ) ) |
| 25 | alephord | |- ( ( x e. On /\ A e. On ) -> ( x e. A <-> ( aleph ` x ) ~< ( aleph ` A ) ) ) |
|
| 26 | 25 | ancoms | |- ( ( A e. On /\ x e. On ) -> ( x e. A <-> ( aleph ` x ) ~< ( aleph ` A ) ) ) |
| 27 | breq1 | |- ( ( card ` z ) = ( aleph ` x ) -> ( ( card ` z ) ~< ( aleph ` A ) <-> ( aleph ` x ) ~< ( aleph ` A ) ) ) |
|
| 28 | 14 | cardid | |- ( card ` z ) ~~ z |
| 29 | sdomen1 | |- ( ( card ` z ) ~~ z -> ( ( card ` z ) ~< ( aleph ` A ) <-> z ~< ( aleph ` A ) ) ) |
|
| 30 | 28 29 | ax-mp | |- ( ( card ` z ) ~< ( aleph ` A ) <-> z ~< ( aleph ` A ) ) |
| 31 | 27 30 | bitr3di | |- ( ( card ` z ) = ( aleph ` x ) -> ( ( aleph ` x ) ~< ( aleph ` A ) <-> z ~< ( aleph ` A ) ) ) |
| 32 | 26 31 | sylan9bb | |- ( ( ( A e. On /\ x e. On ) /\ ( card ` z ) = ( aleph ` x ) ) -> ( x e. A <-> z ~< ( aleph ` A ) ) ) |
| 33 | fveq2 | |- ( y = x -> ( aleph ` y ) = ( aleph ` x ) ) |
|
| 34 | 33 | breq1d | |- ( y = x -> ( ( aleph ` y ) ~< z <-> ( aleph ` x ) ~< z ) ) |
| 35 | 34 | rspcv | |- ( x e. A -> ( A. y e. A ( aleph ` y ) ~< z -> ( aleph ` x ) ~< z ) ) |
| 36 | sdomirr | |- -. ( aleph ` x ) ~< ( aleph ` x ) |
|
| 37 | sdomen2 | |- ( ( card ` z ) ~~ z -> ( ( aleph ` x ) ~< ( card ` z ) <-> ( aleph ` x ) ~< z ) ) |
|
| 38 | 28 37 | ax-mp | |- ( ( aleph ` x ) ~< ( card ` z ) <-> ( aleph ` x ) ~< z ) |
| 39 | breq2 | |- ( ( card ` z ) = ( aleph ` x ) -> ( ( aleph ` x ) ~< ( card ` z ) <-> ( aleph ` x ) ~< ( aleph ` x ) ) ) |
|
| 40 | 38 39 | bitr3id | |- ( ( card ` z ) = ( aleph ` x ) -> ( ( aleph ` x ) ~< z <-> ( aleph ` x ) ~< ( aleph ` x ) ) ) |
| 41 | 36 40 | mtbiri | |- ( ( card ` z ) = ( aleph ` x ) -> -. ( aleph ` x ) ~< z ) |
| 42 | 35 41 | nsyli | |- ( x e. A -> ( ( card ` z ) = ( aleph ` x ) -> -. A. y e. A ( aleph ` y ) ~< z ) ) |
| 43 | 42 | com12 | |- ( ( card ` z ) = ( aleph ` x ) -> ( x e. A -> -. A. y e. A ( aleph ` y ) ~< z ) ) |
| 44 | 43 | adantl | |- ( ( ( A e. On /\ x e. On ) /\ ( card ` z ) = ( aleph ` x ) ) -> ( x e. A -> -. A. y e. A ( aleph ` y ) ~< z ) ) |
| 45 | 32 44 | sylbird | |- ( ( ( A e. On /\ x e. On ) /\ ( card ` z ) = ( aleph ` x ) ) -> ( z ~< ( aleph ` A ) -> -. A. y e. A ( aleph ` y ) ~< z ) ) |
| 46 | 45 | rexlimdva2 | |- ( A e. On -> ( E. x e. On ( card ` z ) = ( aleph ` x ) -> ( z ~< ( aleph ` A ) -> -. A. y e. A ( aleph ` y ) ~< z ) ) ) |
| 47 | 24 46 | syl5 | |- ( A e. On -> ( _om C_ ( card ` z ) -> ( z ~< ( aleph ` A ) -> -. A. y e. A ( aleph ` y ) ~< z ) ) ) |
| 48 | 21 47 | biimtrid | |- ( A e. On -> ( _om ~<_ z -> ( z ~< ( aleph ` A ) -> -. A. y e. A ( aleph ` y ) ~< z ) ) ) |
| 49 | 48 | adantr | |- ( ( A e. On /\ (/) e. A ) -> ( _om ~<_ z -> ( z ~< ( aleph ` A ) -> -. A. y e. A ( aleph ` y ) ~< z ) ) ) |
| 50 | ne0i | |- ( (/) e. A -> A =/= (/) ) |
|
| 51 | onelon | |- ( ( A e. On /\ y e. A ) -> y e. On ) |
|
| 52 | alephgeom | |- ( y e. On <-> _om C_ ( aleph ` y ) ) |
|
| 53 | alephon | |- ( aleph ` y ) e. On |
|
| 54 | ssdomg | |- ( ( aleph ` y ) e. On -> ( _om C_ ( aleph ` y ) -> _om ~<_ ( aleph ` y ) ) ) |
|
| 55 | 53 54 | ax-mp | |- ( _om C_ ( aleph ` y ) -> _om ~<_ ( aleph ` y ) ) |
| 56 | 52 55 | sylbi | |- ( y e. On -> _om ~<_ ( aleph ` y ) ) |
| 57 | domtr | |- ( ( z ~<_ _om /\ _om ~<_ ( aleph ` y ) ) -> z ~<_ ( aleph ` y ) ) |
|
| 58 | 56 57 | sylan2 | |- ( ( z ~<_ _om /\ y e. On ) -> z ~<_ ( aleph ` y ) ) |
| 59 | domnsym | |- ( z ~<_ ( aleph ` y ) -> -. ( aleph ` y ) ~< z ) |
|
| 60 | 58 59 | syl | |- ( ( z ~<_ _om /\ y e. On ) -> -. ( aleph ` y ) ~< z ) |
| 61 | 51 60 | sylan2 | |- ( ( z ~<_ _om /\ ( A e. On /\ y e. A ) ) -> -. ( aleph ` y ) ~< z ) |
| 62 | 61 | expr | |- ( ( z ~<_ _om /\ A e. On ) -> ( y e. A -> -. ( aleph ` y ) ~< z ) ) |
| 63 | 62 | ralrimiv | |- ( ( z ~<_ _om /\ A e. On ) -> A. y e. A -. ( aleph ` y ) ~< z ) |
| 64 | r19.2z | |- ( ( A =/= (/) /\ A. y e. A -. ( aleph ` y ) ~< z ) -> E. y e. A -. ( aleph ` y ) ~< z ) |
|
| 65 | 64 | ex | |- ( A =/= (/) -> ( A. y e. A -. ( aleph ` y ) ~< z -> E. y e. A -. ( aleph ` y ) ~< z ) ) |
| 66 | 50 63 65 | syl2im | |- ( (/) e. A -> ( ( z ~<_ _om /\ A e. On ) -> E. y e. A -. ( aleph ` y ) ~< z ) ) |
| 67 | rexnal | |- ( E. y e. A -. ( aleph ` y ) ~< z <-> -. A. y e. A ( aleph ` y ) ~< z ) |
|
| 68 | 66 67 | imbitrdi | |- ( (/) e. A -> ( ( z ~<_ _om /\ A e. On ) -> -. A. y e. A ( aleph ` y ) ~< z ) ) |
| 69 | 68 | com12 | |- ( ( z ~<_ _om /\ A e. On ) -> ( (/) e. A -> -. A. y e. A ( aleph ` y ) ~< z ) ) |
| 70 | 69 | expimpd | |- ( z ~<_ _om -> ( ( A e. On /\ (/) e. A ) -> -. A. y e. A ( aleph ` y ) ~< z ) ) |
| 71 | 70 | a1d | |- ( z ~<_ _om -> ( z ~< ( aleph ` A ) -> ( ( A e. On /\ (/) e. A ) -> -. A. y e. A ( aleph ` y ) ~< z ) ) ) |
| 72 | 71 | com3r | |- ( ( A e. On /\ (/) e. A ) -> ( z ~<_ _om -> ( z ~< ( aleph ` A ) -> -. A. y e. A ( aleph ` y ) ~< z ) ) ) |
| 73 | 49 72 | jaod | |- ( ( A e. On /\ (/) e. A ) -> ( ( _om ~<_ z \/ z ~<_ _om ) -> ( z ~< ( aleph ` A ) -> -. A. y e. A ( aleph ` y ) ~< z ) ) ) |
| 74 | 16 73 | mpi | |- ( ( A e. On /\ (/) e. A ) -> ( z ~< ( aleph ` A ) -> -. A. y e. A ( aleph ` y ) ~< z ) ) |
| 75 | breq2 | |- ( x = z -> ( ( aleph ` y ) ~< x <-> ( aleph ` y ) ~< z ) ) |
|
| 76 | 75 | ralbidv | |- ( x = z -> ( A. y e. A ( aleph ` y ) ~< x <-> A. y e. A ( aleph ` y ) ~< z ) ) |
| 77 | 76 | elrab | |- ( z e. { x e. On | A. y e. A ( aleph ` y ) ~< x } <-> ( z e. On /\ A. y e. A ( aleph ` y ) ~< z ) ) |
| 78 | 77 | simprbi | |- ( z e. { x e. On | A. y e. A ( aleph ` y ) ~< x } -> A. y e. A ( aleph ` y ) ~< z ) |
| 79 | 78 | con3i | |- ( -. A. y e. A ( aleph ` y ) ~< z -> -. z e. { x e. On | A. y e. A ( aleph ` y ) ~< x } ) |
| 80 | 12 74 79 | syl56 | |- ( ( A e. On /\ (/) e. A ) -> ( z e. ( aleph ` A ) -> -. z e. { x e. On | A. y e. A ( aleph ` y ) ~< x } ) ) |
| 81 | 80 | ralrimiv | |- ( ( A e. On /\ (/) e. A ) -> A. z e. ( aleph ` A ) -. z e. { x e. On | A. y e. A ( aleph ` y ) ~< x } ) |
| 82 | ssrab2 | |- { x e. On | A. y e. A ( aleph ` y ) ~< x } C_ On |
|
| 83 | oneqmini | |- ( { x e. On | A. y e. A ( aleph ` y ) ~< x } C_ On -> ( ( ( aleph ` A ) e. { x e. On | A. y e. A ( aleph ` y ) ~< x } /\ A. z e. ( aleph ` A ) -. z e. { x e. On | A. y e. A ( aleph ` y ) ~< x } ) -> ( aleph ` A ) = |^| { x e. On | A. y e. A ( aleph ` y ) ~< x } ) ) |
|
| 84 | 82 83 | ax-mp | |- ( ( ( aleph ` A ) e. { x e. On | A. y e. A ( aleph ` y ) ~< x } /\ A. z e. ( aleph ` A ) -. z e. { x e. On | A. y e. A ( aleph ` y ) ~< x } ) -> ( aleph ` A ) = |^| { x e. On | A. y e. A ( aleph ` y ) ~< x } ) |
| 85 | 8 81 84 | syl2an2r | |- ( ( A e. On /\ (/) e. A ) -> ( aleph ` A ) = |^| { x e. On | A. y e. A ( aleph ` y ) ~< x } ) |