This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Disjoint unions with disjoint index sets are disjoint. (Contributed by Stefan O'Rear, 21-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djudisj | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐶 ) ∩ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝐷 ) ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | djussxp | ⊢ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐶 ) ⊆ ( 𝐴 × V ) | |
| 2 | incom | ⊢ ( ( 𝐴 × V ) ∩ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝐷 ) ) = ( ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝐷 ) ∩ ( 𝐴 × V ) ) | |
| 3 | djussxp | ⊢ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝐷 ) ⊆ ( 𝐵 × V ) | |
| 4 | incom | ⊢ ( ( 𝐵 × V ) ∩ ( 𝐴 × V ) ) = ( ( 𝐴 × V ) ∩ ( 𝐵 × V ) ) | |
| 5 | xpdisj1 | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( 𝐴 × V ) ∩ ( 𝐵 × V ) ) = ∅ ) | |
| 6 | 4 5 | eqtrid | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( 𝐵 × V ) ∩ ( 𝐴 × V ) ) = ∅ ) |
| 7 | ssdisj | ⊢ ( ( ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝐷 ) ⊆ ( 𝐵 × V ) ∧ ( ( 𝐵 × V ) ∩ ( 𝐴 × V ) ) = ∅ ) → ( ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝐷 ) ∩ ( 𝐴 × V ) ) = ∅ ) | |
| 8 | 3 6 7 | sylancr | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝐷 ) ∩ ( 𝐴 × V ) ) = ∅ ) |
| 9 | 2 8 | eqtrid | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( 𝐴 × V ) ∩ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝐷 ) ) = ∅ ) |
| 10 | ssdisj | ⊢ ( ( ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐶 ) ⊆ ( 𝐴 × V ) ∧ ( ( 𝐴 × V ) ∩ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝐷 ) ) = ∅ ) → ( ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐶 ) ∩ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝐷 ) ) = ∅ ) | |
| 11 | 1 9 10 | sylancr | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × 𝐶 ) ∩ ∪ 𝑦 ∈ 𝐵 ( { 𝑦 } × 𝐷 ) ) = ∅ ) |