This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A rule for divisibility by 3 of a number written in base 10. This is Metamath 100 proof #85. (Contributed by Mario Carneiro, 14-Jul-2014) (Revised by Mario Carneiro, 17-Jan-2015) (Revised by AV, 8-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3dvds | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 : ( 0 ... 𝑁 ) ⟶ ℤ ) → ( 3 ∥ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐹 ‘ 𝑘 ) · ( ; 1 0 ↑ 𝑘 ) ) ↔ 3 ∥ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3z | ⊢ 3 ∈ ℤ | |
| 2 | 1 | a1i | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 : ( 0 ... 𝑁 ) ⟶ ℤ ) → 3 ∈ ℤ ) |
| 3 | fzfid | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 : ( 0 ... 𝑁 ) ⟶ ℤ ) → ( 0 ... 𝑁 ) ∈ Fin ) | |
| 4 | ffvelcdm | ⊢ ( ( 𝐹 : ( 0 ... 𝑁 ) ⟶ ℤ ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℤ ) | |
| 5 | 4 | adantll | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 : ( 0 ... 𝑁 ) ⟶ ℤ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℤ ) |
| 6 | 10nn | ⊢ ; 1 0 ∈ ℕ | |
| 7 | 6 | nnzi | ⊢ ; 1 0 ∈ ℤ |
| 8 | elfznn0 | ⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ℕ0 ) | |
| 9 | 8 | adantl | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 : ( 0 ... 𝑁 ) ⟶ ℤ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 𝑘 ∈ ℕ0 ) |
| 10 | zexpcl | ⊢ ( ( ; 1 0 ∈ ℤ ∧ 𝑘 ∈ ℕ0 ) → ( ; 1 0 ↑ 𝑘 ) ∈ ℤ ) | |
| 11 | 7 9 10 | sylancr | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 : ( 0 ... 𝑁 ) ⟶ ℤ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ; 1 0 ↑ 𝑘 ) ∈ ℤ ) |
| 12 | 5 11 | zmulcld | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 : ( 0 ... 𝑁 ) ⟶ ℤ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑘 ) · ( ; 1 0 ↑ 𝑘 ) ) ∈ ℤ ) |
| 13 | 3 12 | fsumzcl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 : ( 0 ... 𝑁 ) ⟶ ℤ ) → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐹 ‘ 𝑘 ) · ( ; 1 0 ↑ 𝑘 ) ) ∈ ℤ ) |
| 14 | 3 5 | fsumzcl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 : ( 0 ... 𝑁 ) ⟶ ℤ ) → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℤ ) |
| 15 | 12 5 | zsubcld | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 : ( 0 ... 𝑁 ) ⟶ ℤ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) · ( ; 1 0 ↑ 𝑘 ) ) − ( 𝐹 ‘ 𝑘 ) ) ∈ ℤ ) |
| 16 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 17 | 6 | nncni | ⊢ ; 1 0 ∈ ℂ |
| 18 | 16 17 | negsubdi2i | ⊢ - ( 1 − ; 1 0 ) = ( ; 1 0 − 1 ) |
| 19 | 9p1e10 | ⊢ ( 9 + 1 ) = ; 1 0 | |
| 20 | 19 | eqcomi | ⊢ ; 1 0 = ( 9 + 1 ) |
| 21 | 20 | oveq1i | ⊢ ( ; 1 0 − 1 ) = ( ( 9 + 1 ) − 1 ) |
| 22 | 9cn | ⊢ 9 ∈ ℂ | |
| 23 | 22 16 | pncan3oi | ⊢ ( ( 9 + 1 ) − 1 ) = 9 |
| 24 | 18 21 23 | 3eqtri | ⊢ - ( 1 − ; 1 0 ) = 9 |
| 25 | 3t3e9 | ⊢ ( 3 · 3 ) = 9 | |
| 26 | 24 25 | eqtr4i | ⊢ - ( 1 − ; 1 0 ) = ( 3 · 3 ) |
| 27 | 17 | a1i | ⊢ ( 𝑘 ∈ ℕ0 → ; 1 0 ∈ ℂ ) |
| 28 | 1re | ⊢ 1 ∈ ℝ | |
| 29 | 1lt10 | ⊢ 1 < ; 1 0 | |
| 30 | 28 29 | gtneii | ⊢ ; 1 0 ≠ 1 |
| 31 | 30 | a1i | ⊢ ( 𝑘 ∈ ℕ0 → ; 1 0 ≠ 1 ) |
| 32 | id | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℕ0 ) | |
| 33 | 27 31 32 | geoser | ⊢ ( 𝑘 ∈ ℕ0 → Σ 𝑗 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( ; 1 0 ↑ 𝑗 ) = ( ( 1 − ( ; 1 0 ↑ 𝑘 ) ) / ( 1 − ; 1 0 ) ) ) |
| 34 | fzfid | ⊢ ( 𝑘 ∈ ℕ0 → ( 0 ... ( 𝑘 − 1 ) ) ∈ Fin ) | |
| 35 | elfznn0 | ⊢ ( 𝑗 ∈ ( 0 ... ( 𝑘 − 1 ) ) → 𝑗 ∈ ℕ0 ) | |
| 36 | 35 | adantl | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑗 ∈ ( 0 ... ( 𝑘 − 1 ) ) ) → 𝑗 ∈ ℕ0 ) |
| 37 | zexpcl | ⊢ ( ( ; 1 0 ∈ ℤ ∧ 𝑗 ∈ ℕ0 ) → ( ; 1 0 ↑ 𝑗 ) ∈ ℤ ) | |
| 38 | 7 36 37 | sylancr | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑗 ∈ ( 0 ... ( 𝑘 − 1 ) ) ) → ( ; 1 0 ↑ 𝑗 ) ∈ ℤ ) |
| 39 | 34 38 | fsumzcl | ⊢ ( 𝑘 ∈ ℕ0 → Σ 𝑗 ∈ ( 0 ... ( 𝑘 − 1 ) ) ( ; 1 0 ↑ 𝑗 ) ∈ ℤ ) |
| 40 | 33 39 | eqeltrrd | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 1 − ( ; 1 0 ↑ 𝑘 ) ) / ( 1 − ; 1 0 ) ) ∈ ℤ ) |
| 41 | 1z | ⊢ 1 ∈ ℤ | |
| 42 | zsubcl | ⊢ ( ( 1 ∈ ℤ ∧ ; 1 0 ∈ ℤ ) → ( 1 − ; 1 0 ) ∈ ℤ ) | |
| 43 | 41 7 42 | mp2an | ⊢ ( 1 − ; 1 0 ) ∈ ℤ |
| 44 | 28 29 | ltneii | ⊢ 1 ≠ ; 1 0 |
| 45 | 16 17 | subeq0i | ⊢ ( ( 1 − ; 1 0 ) = 0 ↔ 1 = ; 1 0 ) |
| 46 | 45 | necon3bii | ⊢ ( ( 1 − ; 1 0 ) ≠ 0 ↔ 1 ≠ ; 1 0 ) |
| 47 | 44 46 | mpbir | ⊢ ( 1 − ; 1 0 ) ≠ 0 |
| 48 | 7 32 10 | sylancr | ⊢ ( 𝑘 ∈ ℕ0 → ( ; 1 0 ↑ 𝑘 ) ∈ ℤ ) |
| 49 | zsubcl | ⊢ ( ( 1 ∈ ℤ ∧ ( ; 1 0 ↑ 𝑘 ) ∈ ℤ ) → ( 1 − ( ; 1 0 ↑ 𝑘 ) ) ∈ ℤ ) | |
| 50 | 41 48 49 | sylancr | ⊢ ( 𝑘 ∈ ℕ0 → ( 1 − ( ; 1 0 ↑ 𝑘 ) ) ∈ ℤ ) |
| 51 | dvdsval2 | ⊢ ( ( ( 1 − ; 1 0 ) ∈ ℤ ∧ ( 1 − ; 1 0 ) ≠ 0 ∧ ( 1 − ( ; 1 0 ↑ 𝑘 ) ) ∈ ℤ ) → ( ( 1 − ; 1 0 ) ∥ ( 1 − ( ; 1 0 ↑ 𝑘 ) ) ↔ ( ( 1 − ( ; 1 0 ↑ 𝑘 ) ) / ( 1 − ; 1 0 ) ) ∈ ℤ ) ) | |
| 52 | 43 47 50 51 | mp3an12i | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 1 − ; 1 0 ) ∥ ( 1 − ( ; 1 0 ↑ 𝑘 ) ) ↔ ( ( 1 − ( ; 1 0 ↑ 𝑘 ) ) / ( 1 − ; 1 0 ) ) ∈ ℤ ) ) |
| 53 | 40 52 | mpbird | ⊢ ( 𝑘 ∈ ℕ0 → ( 1 − ; 1 0 ) ∥ ( 1 − ( ; 1 0 ↑ 𝑘 ) ) ) |
| 54 | 48 | zcnd | ⊢ ( 𝑘 ∈ ℕ0 → ( ; 1 0 ↑ 𝑘 ) ∈ ℂ ) |
| 55 | negsubdi2 | ⊢ ( ( ( ; 1 0 ↑ 𝑘 ) ∈ ℂ ∧ 1 ∈ ℂ ) → - ( ( ; 1 0 ↑ 𝑘 ) − 1 ) = ( 1 − ( ; 1 0 ↑ 𝑘 ) ) ) | |
| 56 | 54 16 55 | sylancl | ⊢ ( 𝑘 ∈ ℕ0 → - ( ( ; 1 0 ↑ 𝑘 ) − 1 ) = ( 1 − ( ; 1 0 ↑ 𝑘 ) ) ) |
| 57 | 53 56 | breqtrrd | ⊢ ( 𝑘 ∈ ℕ0 → ( 1 − ; 1 0 ) ∥ - ( ( ; 1 0 ↑ 𝑘 ) − 1 ) ) |
| 58 | peano2zm | ⊢ ( ( ; 1 0 ↑ 𝑘 ) ∈ ℤ → ( ( ; 1 0 ↑ 𝑘 ) − 1 ) ∈ ℤ ) | |
| 59 | 48 58 | syl | ⊢ ( 𝑘 ∈ ℕ0 → ( ( ; 1 0 ↑ 𝑘 ) − 1 ) ∈ ℤ ) |
| 60 | dvdsnegb | ⊢ ( ( ( 1 − ; 1 0 ) ∈ ℤ ∧ ( ( ; 1 0 ↑ 𝑘 ) − 1 ) ∈ ℤ ) → ( ( 1 − ; 1 0 ) ∥ ( ( ; 1 0 ↑ 𝑘 ) − 1 ) ↔ ( 1 − ; 1 0 ) ∥ - ( ( ; 1 0 ↑ 𝑘 ) − 1 ) ) ) | |
| 61 | 43 59 60 | sylancr | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 1 − ; 1 0 ) ∥ ( ( ; 1 0 ↑ 𝑘 ) − 1 ) ↔ ( 1 − ; 1 0 ) ∥ - ( ( ; 1 0 ↑ 𝑘 ) − 1 ) ) ) |
| 62 | 57 61 | mpbird | ⊢ ( 𝑘 ∈ ℕ0 → ( 1 − ; 1 0 ) ∥ ( ( ; 1 0 ↑ 𝑘 ) − 1 ) ) |
| 63 | negdvdsb | ⊢ ( ( ( 1 − ; 1 0 ) ∈ ℤ ∧ ( ( ; 1 0 ↑ 𝑘 ) − 1 ) ∈ ℤ ) → ( ( 1 − ; 1 0 ) ∥ ( ( ; 1 0 ↑ 𝑘 ) − 1 ) ↔ - ( 1 − ; 1 0 ) ∥ ( ( ; 1 0 ↑ 𝑘 ) − 1 ) ) ) | |
| 64 | 43 59 63 | sylancr | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 1 − ; 1 0 ) ∥ ( ( ; 1 0 ↑ 𝑘 ) − 1 ) ↔ - ( 1 − ; 1 0 ) ∥ ( ( ; 1 0 ↑ 𝑘 ) − 1 ) ) ) |
| 65 | 62 64 | mpbid | ⊢ ( 𝑘 ∈ ℕ0 → - ( 1 − ; 1 0 ) ∥ ( ( ; 1 0 ↑ 𝑘 ) − 1 ) ) |
| 66 | 26 65 | eqbrtrrid | ⊢ ( 𝑘 ∈ ℕ0 → ( 3 · 3 ) ∥ ( ( ; 1 0 ↑ 𝑘 ) − 1 ) ) |
| 67 | muldvds1 | ⊢ ( ( 3 ∈ ℤ ∧ 3 ∈ ℤ ∧ ( ( ; 1 0 ↑ 𝑘 ) − 1 ) ∈ ℤ ) → ( ( 3 · 3 ) ∥ ( ( ; 1 0 ↑ 𝑘 ) − 1 ) → 3 ∥ ( ( ; 1 0 ↑ 𝑘 ) − 1 ) ) ) | |
| 68 | 1 1 59 67 | mp3an12i | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 3 · 3 ) ∥ ( ( ; 1 0 ↑ 𝑘 ) − 1 ) → 3 ∥ ( ( ; 1 0 ↑ 𝑘 ) − 1 ) ) ) |
| 69 | 66 68 | mpd | ⊢ ( 𝑘 ∈ ℕ0 → 3 ∥ ( ( ; 1 0 ↑ 𝑘 ) − 1 ) ) |
| 70 | 9 69 | syl | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 : ( 0 ... 𝑁 ) ⟶ ℤ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 3 ∥ ( ( ; 1 0 ↑ 𝑘 ) − 1 ) ) |
| 71 | 11 58 | syl | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 : ( 0 ... 𝑁 ) ⟶ ℤ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( ; 1 0 ↑ 𝑘 ) − 1 ) ∈ ℤ ) |
| 72 | dvdsmultr2 | ⊢ ( ( 3 ∈ ℤ ∧ ( 𝐹 ‘ 𝑘 ) ∈ ℤ ∧ ( ( ; 1 0 ↑ 𝑘 ) − 1 ) ∈ ℤ ) → ( 3 ∥ ( ( ; 1 0 ↑ 𝑘 ) − 1 ) → 3 ∥ ( ( 𝐹 ‘ 𝑘 ) · ( ( ; 1 0 ↑ 𝑘 ) − 1 ) ) ) ) | |
| 73 | 1 5 71 72 | mp3an2i | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 : ( 0 ... 𝑁 ) ⟶ ℤ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 3 ∥ ( ( ; 1 0 ↑ 𝑘 ) − 1 ) → 3 ∥ ( ( 𝐹 ‘ 𝑘 ) · ( ( ; 1 0 ↑ 𝑘 ) − 1 ) ) ) ) |
| 74 | 70 73 | mpd | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 : ( 0 ... 𝑁 ) ⟶ ℤ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 3 ∥ ( ( 𝐹 ‘ 𝑘 ) · ( ( ; 1 0 ↑ 𝑘 ) − 1 ) ) ) |
| 75 | 5 | zcnd | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 : ( 0 ... 𝑁 ) ⟶ ℤ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 76 | 11 | zcnd | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 : ( 0 ... 𝑁 ) ⟶ ℤ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ; 1 0 ↑ 𝑘 ) ∈ ℂ ) |
| 77 | 75 76 | muls1d | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 : ( 0 ... 𝑁 ) ⟶ ℤ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑘 ) · ( ( ; 1 0 ↑ 𝑘 ) − 1 ) ) = ( ( ( 𝐹 ‘ 𝑘 ) · ( ; 1 0 ↑ 𝑘 ) ) − ( 𝐹 ‘ 𝑘 ) ) ) |
| 78 | 74 77 | breqtrd | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 : ( 0 ... 𝑁 ) ⟶ ℤ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → 3 ∥ ( ( ( 𝐹 ‘ 𝑘 ) · ( ; 1 0 ↑ 𝑘 ) ) − ( 𝐹 ‘ 𝑘 ) ) ) |
| 79 | 3 2 15 78 | fsumdvds | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 : ( 0 ... 𝑁 ) ⟶ ℤ ) → 3 ∥ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( 𝐹 ‘ 𝑘 ) · ( ; 1 0 ↑ 𝑘 ) ) − ( 𝐹 ‘ 𝑘 ) ) ) |
| 80 | 12 | zcnd | ⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 : ( 0 ... 𝑁 ) ⟶ ℤ ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝐹 ‘ 𝑘 ) · ( ; 1 0 ↑ 𝑘 ) ) ∈ ℂ ) |
| 81 | 3 80 75 | fsumsub | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 : ( 0 ... 𝑁 ) ⟶ ℤ ) → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( ( 𝐹 ‘ 𝑘 ) · ( ; 1 0 ↑ 𝑘 ) ) − ( 𝐹 ‘ 𝑘 ) ) = ( Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐹 ‘ 𝑘 ) · ( ; 1 0 ↑ 𝑘 ) ) − Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 82 | 79 81 | breqtrd | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 : ( 0 ... 𝑁 ) ⟶ ℤ ) → 3 ∥ ( Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐹 ‘ 𝑘 ) · ( ; 1 0 ↑ 𝑘 ) ) − Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ) ) |
| 83 | dvdssub2 | ⊢ ( ( ( 3 ∈ ℤ ∧ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐹 ‘ 𝑘 ) · ( ; 1 0 ↑ 𝑘 ) ) ∈ ℤ ∧ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ∈ ℤ ) ∧ 3 ∥ ( Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐹 ‘ 𝑘 ) · ( ; 1 0 ↑ 𝑘 ) ) − Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ) ) → ( 3 ∥ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐹 ‘ 𝑘 ) · ( ; 1 0 ↑ 𝑘 ) ) ↔ 3 ∥ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ) ) | |
| 84 | 2 13 14 82 83 | syl31anc | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐹 : ( 0 ... 𝑁 ) ⟶ ℤ ) → ( 3 ∥ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝐹 ‘ 𝑘 ) · ( ; 1 0 ↑ 𝑘 ) ) ↔ 3 ∥ Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) ) ) |