This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A rule for divisibility by 3 of a number written in base 10. This is Metamath 100 proof #85. (Contributed by Mario Carneiro, 14-Jul-2014) (Revised by Mario Carneiro, 17-Jan-2015) (Revised by AV, 8-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3dvds | |- ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) -> ( 3 || sum_ k e. ( 0 ... N ) ( ( F ` k ) x. ( ; 1 0 ^ k ) ) <-> 3 || sum_ k e. ( 0 ... N ) ( F ` k ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3z | |- 3 e. ZZ |
|
| 2 | 1 | a1i | |- ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) -> 3 e. ZZ ) |
| 3 | fzfid | |- ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) -> ( 0 ... N ) e. Fin ) |
|
| 4 | ffvelcdm | |- ( ( F : ( 0 ... N ) --> ZZ /\ k e. ( 0 ... N ) ) -> ( F ` k ) e. ZZ ) |
|
| 5 | 4 | adantll | |- ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> ( F ` k ) e. ZZ ) |
| 6 | 10nn | |- ; 1 0 e. NN |
|
| 7 | 6 | nnzi | |- ; 1 0 e. ZZ |
| 8 | elfznn0 | |- ( k e. ( 0 ... N ) -> k e. NN0 ) |
|
| 9 | 8 | adantl | |- ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> k e. NN0 ) |
| 10 | zexpcl | |- ( ( ; 1 0 e. ZZ /\ k e. NN0 ) -> ( ; 1 0 ^ k ) e. ZZ ) |
|
| 11 | 7 9 10 | sylancr | |- ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> ( ; 1 0 ^ k ) e. ZZ ) |
| 12 | 5 11 | zmulcld | |- ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> ( ( F ` k ) x. ( ; 1 0 ^ k ) ) e. ZZ ) |
| 13 | 3 12 | fsumzcl | |- ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) -> sum_ k e. ( 0 ... N ) ( ( F ` k ) x. ( ; 1 0 ^ k ) ) e. ZZ ) |
| 14 | 3 5 | fsumzcl | |- ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) -> sum_ k e. ( 0 ... N ) ( F ` k ) e. ZZ ) |
| 15 | 12 5 | zsubcld | |- ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> ( ( ( F ` k ) x. ( ; 1 0 ^ k ) ) - ( F ` k ) ) e. ZZ ) |
| 16 | ax-1cn | |- 1 e. CC |
|
| 17 | 6 | nncni | |- ; 1 0 e. CC |
| 18 | 16 17 | negsubdi2i | |- -u ( 1 - ; 1 0 ) = ( ; 1 0 - 1 ) |
| 19 | 9p1e10 | |- ( 9 + 1 ) = ; 1 0 |
|
| 20 | 19 | eqcomi | |- ; 1 0 = ( 9 + 1 ) |
| 21 | 20 | oveq1i | |- ( ; 1 0 - 1 ) = ( ( 9 + 1 ) - 1 ) |
| 22 | 9cn | |- 9 e. CC |
|
| 23 | 22 16 | pncan3oi | |- ( ( 9 + 1 ) - 1 ) = 9 |
| 24 | 18 21 23 | 3eqtri | |- -u ( 1 - ; 1 0 ) = 9 |
| 25 | 3t3e9 | |- ( 3 x. 3 ) = 9 |
|
| 26 | 24 25 | eqtr4i | |- -u ( 1 - ; 1 0 ) = ( 3 x. 3 ) |
| 27 | 17 | a1i | |- ( k e. NN0 -> ; 1 0 e. CC ) |
| 28 | 1re | |- 1 e. RR |
|
| 29 | 1lt10 | |- 1 < ; 1 0 |
|
| 30 | 28 29 | gtneii | |- ; 1 0 =/= 1 |
| 31 | 30 | a1i | |- ( k e. NN0 -> ; 1 0 =/= 1 ) |
| 32 | id | |- ( k e. NN0 -> k e. NN0 ) |
|
| 33 | 27 31 32 | geoser | |- ( k e. NN0 -> sum_ j e. ( 0 ... ( k - 1 ) ) ( ; 1 0 ^ j ) = ( ( 1 - ( ; 1 0 ^ k ) ) / ( 1 - ; 1 0 ) ) ) |
| 34 | fzfid | |- ( k e. NN0 -> ( 0 ... ( k - 1 ) ) e. Fin ) |
|
| 35 | elfznn0 | |- ( j e. ( 0 ... ( k - 1 ) ) -> j e. NN0 ) |
|
| 36 | 35 | adantl | |- ( ( k e. NN0 /\ j e. ( 0 ... ( k - 1 ) ) ) -> j e. NN0 ) |
| 37 | zexpcl | |- ( ( ; 1 0 e. ZZ /\ j e. NN0 ) -> ( ; 1 0 ^ j ) e. ZZ ) |
|
| 38 | 7 36 37 | sylancr | |- ( ( k e. NN0 /\ j e. ( 0 ... ( k - 1 ) ) ) -> ( ; 1 0 ^ j ) e. ZZ ) |
| 39 | 34 38 | fsumzcl | |- ( k e. NN0 -> sum_ j e. ( 0 ... ( k - 1 ) ) ( ; 1 0 ^ j ) e. ZZ ) |
| 40 | 33 39 | eqeltrrd | |- ( k e. NN0 -> ( ( 1 - ( ; 1 0 ^ k ) ) / ( 1 - ; 1 0 ) ) e. ZZ ) |
| 41 | 1z | |- 1 e. ZZ |
|
| 42 | zsubcl | |- ( ( 1 e. ZZ /\ ; 1 0 e. ZZ ) -> ( 1 - ; 1 0 ) e. ZZ ) |
|
| 43 | 41 7 42 | mp2an | |- ( 1 - ; 1 0 ) e. ZZ |
| 44 | 28 29 | ltneii | |- 1 =/= ; 1 0 |
| 45 | 16 17 | subeq0i | |- ( ( 1 - ; 1 0 ) = 0 <-> 1 = ; 1 0 ) |
| 46 | 45 | necon3bii | |- ( ( 1 - ; 1 0 ) =/= 0 <-> 1 =/= ; 1 0 ) |
| 47 | 44 46 | mpbir | |- ( 1 - ; 1 0 ) =/= 0 |
| 48 | 7 32 10 | sylancr | |- ( k e. NN0 -> ( ; 1 0 ^ k ) e. ZZ ) |
| 49 | zsubcl | |- ( ( 1 e. ZZ /\ ( ; 1 0 ^ k ) e. ZZ ) -> ( 1 - ( ; 1 0 ^ k ) ) e. ZZ ) |
|
| 50 | 41 48 49 | sylancr | |- ( k e. NN0 -> ( 1 - ( ; 1 0 ^ k ) ) e. ZZ ) |
| 51 | dvdsval2 | |- ( ( ( 1 - ; 1 0 ) e. ZZ /\ ( 1 - ; 1 0 ) =/= 0 /\ ( 1 - ( ; 1 0 ^ k ) ) e. ZZ ) -> ( ( 1 - ; 1 0 ) || ( 1 - ( ; 1 0 ^ k ) ) <-> ( ( 1 - ( ; 1 0 ^ k ) ) / ( 1 - ; 1 0 ) ) e. ZZ ) ) |
|
| 52 | 43 47 50 51 | mp3an12i | |- ( k e. NN0 -> ( ( 1 - ; 1 0 ) || ( 1 - ( ; 1 0 ^ k ) ) <-> ( ( 1 - ( ; 1 0 ^ k ) ) / ( 1 - ; 1 0 ) ) e. ZZ ) ) |
| 53 | 40 52 | mpbird | |- ( k e. NN0 -> ( 1 - ; 1 0 ) || ( 1 - ( ; 1 0 ^ k ) ) ) |
| 54 | 48 | zcnd | |- ( k e. NN0 -> ( ; 1 0 ^ k ) e. CC ) |
| 55 | negsubdi2 | |- ( ( ( ; 1 0 ^ k ) e. CC /\ 1 e. CC ) -> -u ( ( ; 1 0 ^ k ) - 1 ) = ( 1 - ( ; 1 0 ^ k ) ) ) |
|
| 56 | 54 16 55 | sylancl | |- ( k e. NN0 -> -u ( ( ; 1 0 ^ k ) - 1 ) = ( 1 - ( ; 1 0 ^ k ) ) ) |
| 57 | 53 56 | breqtrrd | |- ( k e. NN0 -> ( 1 - ; 1 0 ) || -u ( ( ; 1 0 ^ k ) - 1 ) ) |
| 58 | peano2zm | |- ( ( ; 1 0 ^ k ) e. ZZ -> ( ( ; 1 0 ^ k ) - 1 ) e. ZZ ) |
|
| 59 | 48 58 | syl | |- ( k e. NN0 -> ( ( ; 1 0 ^ k ) - 1 ) e. ZZ ) |
| 60 | dvdsnegb | |- ( ( ( 1 - ; 1 0 ) e. ZZ /\ ( ( ; 1 0 ^ k ) - 1 ) e. ZZ ) -> ( ( 1 - ; 1 0 ) || ( ( ; 1 0 ^ k ) - 1 ) <-> ( 1 - ; 1 0 ) || -u ( ( ; 1 0 ^ k ) - 1 ) ) ) |
|
| 61 | 43 59 60 | sylancr | |- ( k e. NN0 -> ( ( 1 - ; 1 0 ) || ( ( ; 1 0 ^ k ) - 1 ) <-> ( 1 - ; 1 0 ) || -u ( ( ; 1 0 ^ k ) - 1 ) ) ) |
| 62 | 57 61 | mpbird | |- ( k e. NN0 -> ( 1 - ; 1 0 ) || ( ( ; 1 0 ^ k ) - 1 ) ) |
| 63 | negdvdsb | |- ( ( ( 1 - ; 1 0 ) e. ZZ /\ ( ( ; 1 0 ^ k ) - 1 ) e. ZZ ) -> ( ( 1 - ; 1 0 ) || ( ( ; 1 0 ^ k ) - 1 ) <-> -u ( 1 - ; 1 0 ) || ( ( ; 1 0 ^ k ) - 1 ) ) ) |
|
| 64 | 43 59 63 | sylancr | |- ( k e. NN0 -> ( ( 1 - ; 1 0 ) || ( ( ; 1 0 ^ k ) - 1 ) <-> -u ( 1 - ; 1 0 ) || ( ( ; 1 0 ^ k ) - 1 ) ) ) |
| 65 | 62 64 | mpbid | |- ( k e. NN0 -> -u ( 1 - ; 1 0 ) || ( ( ; 1 0 ^ k ) - 1 ) ) |
| 66 | 26 65 | eqbrtrrid | |- ( k e. NN0 -> ( 3 x. 3 ) || ( ( ; 1 0 ^ k ) - 1 ) ) |
| 67 | muldvds1 | |- ( ( 3 e. ZZ /\ 3 e. ZZ /\ ( ( ; 1 0 ^ k ) - 1 ) e. ZZ ) -> ( ( 3 x. 3 ) || ( ( ; 1 0 ^ k ) - 1 ) -> 3 || ( ( ; 1 0 ^ k ) - 1 ) ) ) |
|
| 68 | 1 1 59 67 | mp3an12i | |- ( k e. NN0 -> ( ( 3 x. 3 ) || ( ( ; 1 0 ^ k ) - 1 ) -> 3 || ( ( ; 1 0 ^ k ) - 1 ) ) ) |
| 69 | 66 68 | mpd | |- ( k e. NN0 -> 3 || ( ( ; 1 0 ^ k ) - 1 ) ) |
| 70 | 9 69 | syl | |- ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> 3 || ( ( ; 1 0 ^ k ) - 1 ) ) |
| 71 | 11 58 | syl | |- ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> ( ( ; 1 0 ^ k ) - 1 ) e. ZZ ) |
| 72 | dvdsmultr2 | |- ( ( 3 e. ZZ /\ ( F ` k ) e. ZZ /\ ( ( ; 1 0 ^ k ) - 1 ) e. ZZ ) -> ( 3 || ( ( ; 1 0 ^ k ) - 1 ) -> 3 || ( ( F ` k ) x. ( ( ; 1 0 ^ k ) - 1 ) ) ) ) |
|
| 73 | 1 5 71 72 | mp3an2i | |- ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> ( 3 || ( ( ; 1 0 ^ k ) - 1 ) -> 3 || ( ( F ` k ) x. ( ( ; 1 0 ^ k ) - 1 ) ) ) ) |
| 74 | 70 73 | mpd | |- ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> 3 || ( ( F ` k ) x. ( ( ; 1 0 ^ k ) - 1 ) ) ) |
| 75 | 5 | zcnd | |- ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> ( F ` k ) e. CC ) |
| 76 | 11 | zcnd | |- ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> ( ; 1 0 ^ k ) e. CC ) |
| 77 | 75 76 | muls1d | |- ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> ( ( F ` k ) x. ( ( ; 1 0 ^ k ) - 1 ) ) = ( ( ( F ` k ) x. ( ; 1 0 ^ k ) ) - ( F ` k ) ) ) |
| 78 | 74 77 | breqtrd | |- ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> 3 || ( ( ( F ` k ) x. ( ; 1 0 ^ k ) ) - ( F ` k ) ) ) |
| 79 | 3 2 15 78 | fsumdvds | |- ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) -> 3 || sum_ k e. ( 0 ... N ) ( ( ( F ` k ) x. ( ; 1 0 ^ k ) ) - ( F ` k ) ) ) |
| 80 | 12 | zcnd | |- ( ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) /\ k e. ( 0 ... N ) ) -> ( ( F ` k ) x. ( ; 1 0 ^ k ) ) e. CC ) |
| 81 | 3 80 75 | fsumsub | |- ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) -> sum_ k e. ( 0 ... N ) ( ( ( F ` k ) x. ( ; 1 0 ^ k ) ) - ( F ` k ) ) = ( sum_ k e. ( 0 ... N ) ( ( F ` k ) x. ( ; 1 0 ^ k ) ) - sum_ k e. ( 0 ... N ) ( F ` k ) ) ) |
| 82 | 79 81 | breqtrd | |- ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) -> 3 || ( sum_ k e. ( 0 ... N ) ( ( F ` k ) x. ( ; 1 0 ^ k ) ) - sum_ k e. ( 0 ... N ) ( F ` k ) ) ) |
| 83 | dvdssub2 | |- ( ( ( 3 e. ZZ /\ sum_ k e. ( 0 ... N ) ( ( F ` k ) x. ( ; 1 0 ^ k ) ) e. ZZ /\ sum_ k e. ( 0 ... N ) ( F ` k ) e. ZZ ) /\ 3 || ( sum_ k e. ( 0 ... N ) ( ( F ` k ) x. ( ; 1 0 ^ k ) ) - sum_ k e. ( 0 ... N ) ( F ` k ) ) ) -> ( 3 || sum_ k e. ( 0 ... N ) ( ( F ` k ) x. ( ; 1 0 ^ k ) ) <-> 3 || sum_ k e. ( 0 ... N ) ( F ` k ) ) ) |
|
| 84 | 2 13 14 82 83 | syl31anc | |- ( ( N e. NN0 /\ F : ( 0 ... N ) --> ZZ ) -> ( 3 || sum_ k e. ( 0 ... N ) ( ( F ` k ) x. ( ; 1 0 ^ k ) ) <-> 3 || sum_ k e. ( 0 ... N ) ( F ` k ) ) ) |