This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer divides another iff its negation does. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | negdvdsb | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ - 𝑀 ∥ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) | |
| 2 | znegcl | ⊢ ( 𝑀 ∈ ℤ → - 𝑀 ∈ ℤ ) | |
| 3 | 2 | anim1i | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( - 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
| 4 | znegcl | ⊢ ( 𝑥 ∈ ℤ → - 𝑥 ∈ ℤ ) | |
| 5 | 4 | adantl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → - 𝑥 ∈ ℤ ) |
| 6 | zcn | ⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) | |
| 7 | zcn | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) | |
| 8 | mul2neg | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ ) → ( - 𝑥 · - 𝑀 ) = ( 𝑥 · 𝑀 ) ) | |
| 9 | 6 7 8 | syl2anr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ) → ( - 𝑥 · - 𝑀 ) = ( 𝑥 · 𝑀 ) ) |
| 10 | 9 | adantlr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → ( - 𝑥 · - 𝑀 ) = ( 𝑥 · 𝑀 ) ) |
| 11 | 10 | eqeq1d | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → ( ( - 𝑥 · - 𝑀 ) = 𝑁 ↔ ( 𝑥 · 𝑀 ) = 𝑁 ) ) |
| 12 | 11 | biimprd | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 · 𝑀 ) = 𝑁 → ( - 𝑥 · - 𝑀 ) = 𝑁 ) ) |
| 13 | 1 3 5 12 | dvds1lem | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 → - 𝑀 ∥ 𝑁 ) ) |
| 14 | mulneg12 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ ) → ( - 𝑥 · 𝑀 ) = ( 𝑥 · - 𝑀 ) ) | |
| 15 | 6 7 14 | syl2anr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ) → ( - 𝑥 · 𝑀 ) = ( 𝑥 · - 𝑀 ) ) |
| 16 | 15 | adantlr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → ( - 𝑥 · 𝑀 ) = ( 𝑥 · - 𝑀 ) ) |
| 17 | 16 | eqeq1d | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → ( ( - 𝑥 · 𝑀 ) = 𝑁 ↔ ( 𝑥 · - 𝑀 ) = 𝑁 ) ) |
| 18 | 17 | biimprd | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 · - 𝑀 ) = 𝑁 → ( - 𝑥 · 𝑀 ) = 𝑁 ) ) |
| 19 | 3 1 5 18 | dvds1lem | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( - 𝑀 ∥ 𝑁 → 𝑀 ∥ 𝑁 ) ) |
| 20 | 13 19 | impbid | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ - 𝑀 ∥ 𝑁 ) ) |