This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the finite geometric series 1 + A ^ 1 + A ^ 2 + ... + A ^ ( N - 1 ) . This is Metamath 100 proof #66. (Contributed by NM, 12-May-2006) (Proof shortened by Mario Carneiro, 15-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | geoser.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| geoser.2 | ⊢ ( 𝜑 → 𝐴 ≠ 1 ) | ||
| geoser.3 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| Assertion | geoser | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝐴 ↑ 𝑘 ) = ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) / ( 1 − 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | geoser.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
| 2 | geoser.2 | ⊢ ( 𝜑 → 𝐴 ≠ 1 ) | |
| 3 | geoser.3 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 4 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 5 | 4 | a1i | ⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
| 6 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 7 | 3 6 | eleqtrdi | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 8 | 1 2 5 7 | geoserg | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( 𝐴 ↑ 𝑘 ) = ( ( ( 𝐴 ↑ 0 ) − ( 𝐴 ↑ 𝑁 ) ) / ( 1 − 𝐴 ) ) ) |
| 9 | 3 | nn0zd | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 10 | fzoval | ⊢ ( 𝑁 ∈ ℤ → ( 0 ..^ 𝑁 ) = ( 0 ... ( 𝑁 − 1 ) ) ) | |
| 11 | 9 10 | syl | ⊢ ( 𝜑 → ( 0 ..^ 𝑁 ) = ( 0 ... ( 𝑁 − 1 ) ) ) |
| 12 | 11 | sumeq1d | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( 𝐴 ↑ 𝑘 ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝐴 ↑ 𝑘 ) ) |
| 13 | 1 | exp0d | ⊢ ( 𝜑 → ( 𝐴 ↑ 0 ) = 1 ) |
| 14 | 13 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐴 ↑ 0 ) − ( 𝐴 ↑ 𝑁 ) ) = ( 1 − ( 𝐴 ↑ 𝑁 ) ) ) |
| 15 | 14 | oveq1d | ⊢ ( 𝜑 → ( ( ( 𝐴 ↑ 0 ) − ( 𝐴 ↑ 𝑁 ) ) / ( 1 − 𝐴 ) ) = ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) / ( 1 − 𝐴 ) ) ) |
| 16 | 8 12 15 | 3eqtr3d | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝐴 ↑ 𝑘 ) = ( ( 1 − ( 𝐴 ↑ 𝑁 ) ) / ( 1 − 𝐴 ) ) ) |