This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer divides another iff it divides its negation. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsnegb | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ 𝑀 ∥ - 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) | |
| 2 | znegcl | ⊢ ( 𝑁 ∈ ℤ → - 𝑁 ∈ ℤ ) | |
| 3 | 2 | anim2i | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∈ ℤ ∧ - 𝑁 ∈ ℤ ) ) |
| 4 | znegcl | ⊢ ( 𝑥 ∈ ℤ → - 𝑥 ∈ ℤ ) | |
| 5 | 4 | adantl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → - 𝑥 ∈ ℤ ) |
| 6 | zcn | ⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) | |
| 7 | zcn | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) | |
| 8 | mulneg1 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ ) → ( - 𝑥 · 𝑀 ) = - ( 𝑥 · 𝑀 ) ) | |
| 9 | negeq | ⊢ ( ( 𝑥 · 𝑀 ) = 𝑁 → - ( 𝑥 · 𝑀 ) = - 𝑁 ) | |
| 10 | 9 | eqeq2d | ⊢ ( ( 𝑥 · 𝑀 ) = 𝑁 → ( ( - 𝑥 · 𝑀 ) = - ( 𝑥 · 𝑀 ) ↔ ( - 𝑥 · 𝑀 ) = - 𝑁 ) ) |
| 11 | 8 10 | syl5ibcom | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ ) → ( ( 𝑥 · 𝑀 ) = 𝑁 → ( - 𝑥 · 𝑀 ) = - 𝑁 ) ) |
| 12 | 6 7 11 | syl2anr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 · 𝑀 ) = 𝑁 → ( - 𝑥 · 𝑀 ) = - 𝑁 ) ) |
| 13 | 12 | adantlr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 · 𝑀 ) = 𝑁 → ( - 𝑥 · 𝑀 ) = - 𝑁 ) ) |
| 14 | 1 3 5 13 | dvds1lem | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 → 𝑀 ∥ - 𝑁 ) ) |
| 15 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 16 | negeq | ⊢ ( ( 𝑥 · 𝑀 ) = - 𝑁 → - ( 𝑥 · 𝑀 ) = - - 𝑁 ) | |
| 17 | negneg | ⊢ ( 𝑁 ∈ ℂ → - - 𝑁 = 𝑁 ) | |
| 18 | 16 17 | sylan9eqr | ⊢ ( ( 𝑁 ∈ ℂ ∧ ( 𝑥 · 𝑀 ) = - 𝑁 ) → - ( 𝑥 · 𝑀 ) = 𝑁 ) |
| 19 | 8 18 | sylan9eq | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ ) ∧ ( 𝑁 ∈ ℂ ∧ ( 𝑥 · 𝑀 ) = - 𝑁 ) ) → ( - 𝑥 · 𝑀 ) = 𝑁 ) |
| 20 | 19 | expr | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ ) ∧ 𝑁 ∈ ℂ ) → ( ( 𝑥 · 𝑀 ) = - 𝑁 → ( - 𝑥 · 𝑀 ) = 𝑁 ) ) |
| 21 | 20 | 3impa | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( ( 𝑥 · 𝑀 ) = - 𝑁 → ( - 𝑥 · 𝑀 ) = 𝑁 ) ) |
| 22 | 6 7 15 21 | syl3an | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑥 · 𝑀 ) = - 𝑁 → ( - 𝑥 · 𝑀 ) = 𝑁 ) ) |
| 23 | 22 | 3coml | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 · 𝑀 ) = - 𝑁 → ( - 𝑥 · 𝑀 ) = 𝑁 ) ) |
| 24 | 23 | 3expa | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑥 ∈ ℤ ) → ( ( 𝑥 · 𝑀 ) = - 𝑁 → ( - 𝑥 · 𝑀 ) = 𝑁 ) ) |
| 25 | 3 1 5 24 | dvds1lem | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ - 𝑁 → 𝑀 ∥ 𝑁 ) ) |
| 26 | 14 25 | impbid | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ 𝑀 ∥ - 𝑁 ) ) |