This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an integer divides another, it divides a multiple of it. (Contributed by Paul Chapman, 17-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsmultr2 | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ∥ 𝑁 → 𝐾 ∥ ( 𝑀 · 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsmul2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∥ ( 𝑀 · 𝑁 ) ) | |
| 2 | 1 | biantrud | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ∥ 𝑁 ↔ ( 𝐾 ∥ 𝑁 ∧ 𝑁 ∥ ( 𝑀 · 𝑁 ) ) ) ) |
| 3 | 2 | 3adant1 | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ∥ 𝑁 ↔ ( 𝐾 ∥ 𝑁 ∧ 𝑁 ∥ ( 𝑀 · 𝑁 ) ) ) ) |
| 4 | simp1 | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝐾 ∈ ℤ ) | |
| 5 | simp3 | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℤ ) | |
| 6 | zmulcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 · 𝑁 ) ∈ ℤ ) | |
| 7 | 6 | 3adant1 | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 · 𝑁 ) ∈ ℤ ) |
| 8 | dvdstr | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑀 · 𝑁 ) ∈ ℤ ) → ( ( 𝐾 ∥ 𝑁 ∧ 𝑁 ∥ ( 𝑀 · 𝑁 ) ) → 𝐾 ∥ ( 𝑀 · 𝑁 ) ) ) | |
| 9 | 4 5 7 8 | syl3anc | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐾 ∥ 𝑁 ∧ 𝑁 ∥ ( 𝑀 · 𝑁 ) ) → 𝐾 ∥ ( 𝑀 · 𝑁 ) ) ) |
| 10 | 3 9 | sylbid | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 ∥ 𝑁 → 𝐾 ∥ ( 𝑀 · 𝑁 ) ) ) |