This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A decimal number is divisible by three iff the sum of its two "digits" is divisible by three. The term "digits" in its narrow sense is only correct if A and B actually are digits (i.e. nonnegative integers less than 10). However, this theorem holds for arbitrary nonnegative integers A and B , especially if A is itself a decimal number, e.g., A = ; C D . (Contributed by AV, 14-Jun-2021) (Revised by AV, 8-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 3dvdsdec.a | ⊢ 𝐴 ∈ ℕ0 | |
| 3dvdsdec.b | ⊢ 𝐵 ∈ ℕ0 | ||
| Assertion | 3dvdsdec | ⊢ ( 3 ∥ ; 𝐴 𝐵 ↔ 3 ∥ ( 𝐴 + 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3dvdsdec.a | ⊢ 𝐴 ∈ ℕ0 | |
| 2 | 3dvdsdec.b | ⊢ 𝐵 ∈ ℕ0 | |
| 3 | dfdec10 | ⊢ ; 𝐴 𝐵 = ( ( ; 1 0 · 𝐴 ) + 𝐵 ) | |
| 4 | 9p1e10 | ⊢ ( 9 + 1 ) = ; 1 0 | |
| 5 | 4 | eqcomi | ⊢ ; 1 0 = ( 9 + 1 ) |
| 6 | 5 | oveq1i | ⊢ ( ; 1 0 · 𝐴 ) = ( ( 9 + 1 ) · 𝐴 ) |
| 7 | 9cn | ⊢ 9 ∈ ℂ | |
| 8 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 9 | 1 | nn0cni | ⊢ 𝐴 ∈ ℂ |
| 10 | 7 8 9 | adddiri | ⊢ ( ( 9 + 1 ) · 𝐴 ) = ( ( 9 · 𝐴 ) + ( 1 · 𝐴 ) ) |
| 11 | 9 | mullidi | ⊢ ( 1 · 𝐴 ) = 𝐴 |
| 12 | 11 | oveq2i | ⊢ ( ( 9 · 𝐴 ) + ( 1 · 𝐴 ) ) = ( ( 9 · 𝐴 ) + 𝐴 ) |
| 13 | 6 10 12 | 3eqtri | ⊢ ( ; 1 0 · 𝐴 ) = ( ( 9 · 𝐴 ) + 𝐴 ) |
| 14 | 13 | oveq1i | ⊢ ( ( ; 1 0 · 𝐴 ) + 𝐵 ) = ( ( ( 9 · 𝐴 ) + 𝐴 ) + 𝐵 ) |
| 15 | 7 9 | mulcli | ⊢ ( 9 · 𝐴 ) ∈ ℂ |
| 16 | 2 | nn0cni | ⊢ 𝐵 ∈ ℂ |
| 17 | 15 9 16 | addassi | ⊢ ( ( ( 9 · 𝐴 ) + 𝐴 ) + 𝐵 ) = ( ( 9 · 𝐴 ) + ( 𝐴 + 𝐵 ) ) |
| 18 | 3 14 17 | 3eqtri | ⊢ ; 𝐴 𝐵 = ( ( 9 · 𝐴 ) + ( 𝐴 + 𝐵 ) ) |
| 19 | 18 | breq2i | ⊢ ( 3 ∥ ; 𝐴 𝐵 ↔ 3 ∥ ( ( 9 · 𝐴 ) + ( 𝐴 + 𝐵 ) ) ) |
| 20 | 3z | ⊢ 3 ∈ ℤ | |
| 21 | 1 | nn0zi | ⊢ 𝐴 ∈ ℤ |
| 22 | 2 | nn0zi | ⊢ 𝐵 ∈ ℤ |
| 23 | zaddcl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 + 𝐵 ) ∈ ℤ ) | |
| 24 | 21 22 23 | mp2an | ⊢ ( 𝐴 + 𝐵 ) ∈ ℤ |
| 25 | 9nn | ⊢ 9 ∈ ℕ | |
| 26 | 25 | nnzi | ⊢ 9 ∈ ℤ |
| 27 | zmulcl | ⊢ ( ( 9 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 9 · 𝐴 ) ∈ ℤ ) | |
| 28 | 26 21 27 | mp2an | ⊢ ( 9 · 𝐴 ) ∈ ℤ |
| 29 | zmulcl | ⊢ ( ( 3 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 3 · 𝐴 ) ∈ ℤ ) | |
| 30 | 20 21 29 | mp2an | ⊢ ( 3 · 𝐴 ) ∈ ℤ |
| 31 | dvdsmul1 | ⊢ ( ( 3 ∈ ℤ ∧ ( 3 · 𝐴 ) ∈ ℤ ) → 3 ∥ ( 3 · ( 3 · 𝐴 ) ) ) | |
| 32 | 20 30 31 | mp2an | ⊢ 3 ∥ ( 3 · ( 3 · 𝐴 ) ) |
| 33 | 3t3e9 | ⊢ ( 3 · 3 ) = 9 | |
| 34 | 33 | eqcomi | ⊢ 9 = ( 3 · 3 ) |
| 35 | 34 | oveq1i | ⊢ ( 9 · 𝐴 ) = ( ( 3 · 3 ) · 𝐴 ) |
| 36 | 3cn | ⊢ 3 ∈ ℂ | |
| 37 | 36 36 9 | mulassi | ⊢ ( ( 3 · 3 ) · 𝐴 ) = ( 3 · ( 3 · 𝐴 ) ) |
| 38 | 35 37 | eqtri | ⊢ ( 9 · 𝐴 ) = ( 3 · ( 3 · 𝐴 ) ) |
| 39 | 32 38 | breqtrri | ⊢ 3 ∥ ( 9 · 𝐴 ) |
| 40 | 28 39 | pm3.2i | ⊢ ( ( 9 · 𝐴 ) ∈ ℤ ∧ 3 ∥ ( 9 · 𝐴 ) ) |
| 41 | dvdsadd2b | ⊢ ( ( 3 ∈ ℤ ∧ ( 𝐴 + 𝐵 ) ∈ ℤ ∧ ( ( 9 · 𝐴 ) ∈ ℤ ∧ 3 ∥ ( 9 · 𝐴 ) ) ) → ( 3 ∥ ( 𝐴 + 𝐵 ) ↔ 3 ∥ ( ( 9 · 𝐴 ) + ( 𝐴 + 𝐵 ) ) ) ) | |
| 42 | 20 24 40 41 | mp3an | ⊢ ( 3 ∥ ( 𝐴 + 𝐵 ) ↔ 3 ∥ ( ( 9 · 𝐴 ) + ( 𝐴 + 𝐵 ) ) ) |
| 43 | 19 42 | bitr4i | ⊢ ( 3 ∥ ; 𝐴 𝐵 ↔ 3 ∥ ( 𝐴 + 𝐵 ) ) |