This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rule used to change bound variables, using implicit substitution. Version of cbvmo with a disjoint variable condition, which does not require ax-10 , ax-13 . (Contributed by NM, 9-Mar-1995) (Revised by GG, 23-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvmow.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| cbvmow.2 | ⊢ Ⅎ 𝑥 𝜓 | ||
| cbvmow.3 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | cbvmow | ⊢ ( ∃* 𝑥 𝜑 ↔ ∃* 𝑦 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvmow.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| 2 | cbvmow.2 | ⊢ Ⅎ 𝑥 𝜓 | |
| 3 | cbvmow.3 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | nfv | ⊢ Ⅎ 𝑦 𝑥 = 𝑧 | |
| 5 | 1 4 | nfim | ⊢ Ⅎ 𝑦 ( 𝜑 → 𝑥 = 𝑧 ) |
| 6 | nfv | ⊢ Ⅎ 𝑥 𝑦 = 𝑧 | |
| 7 | 2 6 | nfim | ⊢ Ⅎ 𝑥 ( 𝜓 → 𝑦 = 𝑧 ) |
| 8 | equequ1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝑧 ↔ 𝑦 = 𝑧 ) ) | |
| 9 | 3 8 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 → 𝑥 = 𝑧 ) ↔ ( 𝜓 → 𝑦 = 𝑧 ) ) ) |
| 10 | 5 7 9 | cbvalv1 | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ↔ ∀ 𝑦 ( 𝜓 → 𝑦 = 𝑧 ) ) |
| 11 | 10 | exbii | ⊢ ( ∃ 𝑧 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ↔ ∃ 𝑧 ∀ 𝑦 ( 𝜓 → 𝑦 = 𝑧 ) ) |
| 12 | df-mo | ⊢ ( ∃* 𝑥 𝜑 ↔ ∃ 𝑧 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ) | |
| 13 | df-mo | ⊢ ( ∃* 𝑦 𝜓 ↔ ∃ 𝑧 ∀ 𝑦 ( 𝜓 → 𝑦 = 𝑧 ) ) | |
| 14 | 11 12 13 | 3bitr4i | ⊢ ( ∃* 𝑥 𝜑 ↔ ∃* 𝑦 𝜓 ) |