This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any disjoint collection of open sets in a second-countable space is countable. (Contributed by Mario Carneiro, 21-Mar-2015) (Proof shortened by Mario Carneiro, 9-Apr-2015) (Revised by NM, 17-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2ndcdisj2 | ⊢ ( ( 𝐽 ∈ 2ndω ∧ 𝐴 ⊆ 𝐽 ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 ) → 𝐴 ≼ ω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rmo | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) | |
| 2 | 1 | albii | ⊢ ( ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 ↔ ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |
| 3 | undif2 | ⊢ ( { ∅ } ∪ ( 𝐴 ∖ { ∅ } ) ) = ( { ∅ } ∪ 𝐴 ) | |
| 4 | omex | ⊢ ω ∈ V | |
| 5 | peano1 | ⊢ ∅ ∈ ω | |
| 6 | snssi | ⊢ ( ∅ ∈ ω → { ∅ } ⊆ ω ) | |
| 7 | 5 6 | ax-mp | ⊢ { ∅ } ⊆ ω |
| 8 | ssdomg | ⊢ ( ω ∈ V → ( { ∅ } ⊆ ω → { ∅ } ≼ ω ) ) | |
| 9 | 4 7 8 | mp2 | ⊢ { ∅ } ≼ ω |
| 10 | id | ⊢ ( 𝐽 ∈ 2ndω → 𝐽 ∈ 2ndω ) | |
| 11 | ssdif | ⊢ ( 𝐴 ⊆ 𝐽 → ( 𝐴 ∖ { ∅ } ) ⊆ ( 𝐽 ∖ { ∅ } ) ) | |
| 12 | dfss3 | ⊢ ( ( 𝐴 ∖ { ∅ } ) ⊆ ( 𝐽 ∖ { ∅ } ) ↔ ∀ 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) 𝑥 ∈ ( 𝐽 ∖ { ∅ } ) ) | |
| 13 | 11 12 | sylib | ⊢ ( 𝐴 ⊆ 𝐽 → ∀ 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) 𝑥 ∈ ( 𝐽 ∖ { ∅ } ) ) |
| 14 | eldifi | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) → 𝑥 ∈ 𝐴 ) | |
| 15 | 14 | anim1i | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) |
| 16 | 15 | moimi | ⊢ ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) → ∃* 𝑥 ( 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) ∧ 𝑦 ∈ 𝑥 ) ) |
| 17 | 16 | alimi | ⊢ ( ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) → ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) ∧ 𝑦 ∈ 𝑥 ) ) |
| 18 | df-rmo | ⊢ ( ∃* 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) 𝑦 ∈ 𝑥 ↔ ∃* 𝑥 ( 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) ∧ 𝑦 ∈ 𝑥 ) ) | |
| 19 | 18 | albii | ⊢ ( ∀ 𝑦 ∃* 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) 𝑦 ∈ 𝑥 ↔ ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) ∧ 𝑦 ∈ 𝑥 ) ) |
| 20 | 2ndcdisj | ⊢ ( ( 𝐽 ∈ 2ndω ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) 𝑥 ∈ ( 𝐽 ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) 𝑦 ∈ 𝑥 ) → ( 𝐴 ∖ { ∅ } ) ≼ ω ) | |
| 21 | 19 20 | syl3an3br | ⊢ ( ( 𝐽 ∈ 2ndω ∧ ∀ 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) 𝑥 ∈ ( 𝐽 ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) ∧ 𝑦 ∈ 𝑥 ) ) → ( 𝐴 ∖ { ∅ } ) ≼ ω ) |
| 22 | 10 13 17 21 | syl3an | ⊢ ( ( 𝐽 ∈ 2ndω ∧ 𝐴 ⊆ 𝐽 ∧ ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) → ( 𝐴 ∖ { ∅ } ) ≼ ω ) |
| 23 | unctb | ⊢ ( ( { ∅ } ≼ ω ∧ ( 𝐴 ∖ { ∅ } ) ≼ ω ) → ( { ∅ } ∪ ( 𝐴 ∖ { ∅ } ) ) ≼ ω ) | |
| 24 | 9 22 23 | sylancr | ⊢ ( ( 𝐽 ∈ 2ndω ∧ 𝐴 ⊆ 𝐽 ∧ ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) → ( { ∅ } ∪ ( 𝐴 ∖ { ∅ } ) ) ≼ ω ) |
| 25 | 3 24 | eqbrtrrid | ⊢ ( ( 𝐽 ∈ 2ndω ∧ 𝐴 ⊆ 𝐽 ∧ ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) → ( { ∅ } ∪ 𝐴 ) ≼ ω ) |
| 26 | ctex | ⊢ ( ( { ∅ } ∪ 𝐴 ) ≼ ω → ( { ∅ } ∪ 𝐴 ) ∈ V ) | |
| 27 | 25 26 | syl | ⊢ ( ( 𝐽 ∈ 2ndω ∧ 𝐴 ⊆ 𝐽 ∧ ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) → ( { ∅ } ∪ 𝐴 ) ∈ V ) |
| 28 | ssun2 | ⊢ 𝐴 ⊆ ( { ∅ } ∪ 𝐴 ) | |
| 29 | ssdomg | ⊢ ( ( { ∅ } ∪ 𝐴 ) ∈ V → ( 𝐴 ⊆ ( { ∅ } ∪ 𝐴 ) → 𝐴 ≼ ( { ∅ } ∪ 𝐴 ) ) ) | |
| 30 | 27 28 29 | mpisyl | ⊢ ( ( 𝐽 ∈ 2ndω ∧ 𝐴 ⊆ 𝐽 ∧ ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) → 𝐴 ≼ ( { ∅ } ∪ 𝐴 ) ) |
| 31 | domtr | ⊢ ( ( 𝐴 ≼ ( { ∅ } ∪ 𝐴 ) ∧ ( { ∅ } ∪ 𝐴 ) ≼ ω ) → 𝐴 ≼ ω ) | |
| 32 | 30 25 31 | syl2anc | ⊢ ( ( 𝐽 ∈ 2ndω ∧ 𝐴 ⊆ 𝐽 ∧ ∀ 𝑦 ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) → 𝐴 ≼ ω ) |
| 33 | 2 32 | syl3an3b | ⊢ ( ( 𝐽 ∈ 2ndω ∧ 𝐴 ⊆ 𝐽 ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝑥 ) → 𝐴 ≼ ω ) |