This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Variation of 19.29 . (Contributed by NM, 18-Aug-1993) (Proof shortened by Wolf Lammen, 12-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 19.29r | ⊢ ( ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 𝜓 ) → ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.21 | ⊢ ( 𝜓 → ( 𝜑 → ( 𝜑 ∧ 𝜓 ) ) ) | |
| 2 | 1 | aleximi | ⊢ ( ∀ 𝑥 𝜓 → ( ∃ 𝑥 𝜑 → ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) ) |
| 3 | 2 | impcom | ⊢ ( ( ∃ 𝑥 𝜑 ∧ ∀ 𝑥 𝜓 ) → ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) |