This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any convergent sequence of points in a closed subset of a topological space converges to a point in the set. (Contributed by Mario Carneiro, 30-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmff.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| lmff.3 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | ||
| lmff.4 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| lmcls.5 | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) | ||
| lmcls.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ) | ||
| lmcld.8 | ⊢ ( 𝜑 → 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) | ||
| Assertion | lmcld | ⊢ ( 𝜑 → 𝑃 ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmff.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | lmff.3 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 3 | lmff.4 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 4 | lmcls.5 | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) | |
| 5 | lmcls.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ) | |
| 6 | lmcld.8 | ⊢ ( 𝜑 → 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) | |
| 7 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 8 | 7 | cldss | ⊢ ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) → 𝑆 ⊆ ∪ 𝐽 ) |
| 9 | 6 8 | syl | ⊢ ( 𝜑 → 𝑆 ⊆ ∪ 𝐽 ) |
| 10 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 11 | 2 10 | syl | ⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
| 12 | 9 11 | sseqtrrd | ⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) |
| 13 | 1 2 3 4 5 12 | lmcls | ⊢ ( 𝜑 → 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 14 | cldcls | ⊢ ( 𝑆 ∈ ( Clsd ‘ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = 𝑆 ) | |
| 15 | 6 14 | syl | ⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = 𝑆 ) |
| 16 | 13 15 | eleqtrd | ⊢ ( 𝜑 → 𝑃 ∈ 𝑆 ) |