This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 1 is an identity element for positive real multiplication. Theorem 9-3.7(iv) of Gleason p. 124. (Contributed by NM, 2-Apr-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1idpr | ⊢ ( 𝐴 ∈ P → ( 𝐴 ·P 1P ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex | ⊢ ( ∃ 𝑔 ∈ 1P 𝑥 = ( 𝑓 ·Q 𝑔 ) ↔ ∃ 𝑔 ( 𝑔 ∈ 1P ∧ 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ) | |
| 2 | elprnq | ⊢ ( ( 𝐴 ∈ P ∧ 𝑓 ∈ 𝐴 ) → 𝑓 ∈ Q ) | |
| 3 | breq1 | ⊢ ( 𝑥 = ( 𝑓 ·Q 𝑔 ) → ( 𝑥 <Q 𝑓 ↔ ( 𝑓 ·Q 𝑔 ) <Q 𝑓 ) ) | |
| 4 | df-1p | ⊢ 1P = { 𝑔 ∣ 𝑔 <Q 1Q } | |
| 5 | 4 | eqabri | ⊢ ( 𝑔 ∈ 1P ↔ 𝑔 <Q 1Q ) |
| 6 | ltmnq | ⊢ ( 𝑓 ∈ Q → ( 𝑔 <Q 1Q ↔ ( 𝑓 ·Q 𝑔 ) <Q ( 𝑓 ·Q 1Q ) ) ) | |
| 7 | mulidnq | ⊢ ( 𝑓 ∈ Q → ( 𝑓 ·Q 1Q ) = 𝑓 ) | |
| 8 | 7 | breq2d | ⊢ ( 𝑓 ∈ Q → ( ( 𝑓 ·Q 𝑔 ) <Q ( 𝑓 ·Q 1Q ) ↔ ( 𝑓 ·Q 𝑔 ) <Q 𝑓 ) ) |
| 9 | 6 8 | bitrd | ⊢ ( 𝑓 ∈ Q → ( 𝑔 <Q 1Q ↔ ( 𝑓 ·Q 𝑔 ) <Q 𝑓 ) ) |
| 10 | 5 9 | bitr2id | ⊢ ( 𝑓 ∈ Q → ( ( 𝑓 ·Q 𝑔 ) <Q 𝑓 ↔ 𝑔 ∈ 1P ) ) |
| 11 | 3 10 | sylan9bbr | ⊢ ( ( 𝑓 ∈ Q ∧ 𝑥 = ( 𝑓 ·Q 𝑔 ) ) → ( 𝑥 <Q 𝑓 ↔ 𝑔 ∈ 1P ) ) |
| 12 | 2 11 | sylan | ⊢ ( ( ( 𝐴 ∈ P ∧ 𝑓 ∈ 𝐴 ) ∧ 𝑥 = ( 𝑓 ·Q 𝑔 ) ) → ( 𝑥 <Q 𝑓 ↔ 𝑔 ∈ 1P ) ) |
| 13 | 12 | ex | ⊢ ( ( 𝐴 ∈ P ∧ 𝑓 ∈ 𝐴 ) → ( 𝑥 = ( 𝑓 ·Q 𝑔 ) → ( 𝑥 <Q 𝑓 ↔ 𝑔 ∈ 1P ) ) ) |
| 14 | 13 | pm5.32rd | ⊢ ( ( 𝐴 ∈ P ∧ 𝑓 ∈ 𝐴 ) → ( ( 𝑥 <Q 𝑓 ∧ 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ↔ ( 𝑔 ∈ 1P ∧ 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ) ) |
| 15 | 14 | exbidv | ⊢ ( ( 𝐴 ∈ P ∧ 𝑓 ∈ 𝐴 ) → ( ∃ 𝑔 ( 𝑥 <Q 𝑓 ∧ 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ↔ ∃ 𝑔 ( 𝑔 ∈ 1P ∧ 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ) ) |
| 16 | 19.42v | ⊢ ( ∃ 𝑔 ( 𝑥 <Q 𝑓 ∧ 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ↔ ( 𝑥 <Q 𝑓 ∧ ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ) | |
| 17 | 15 16 | bitr3di | ⊢ ( ( 𝐴 ∈ P ∧ 𝑓 ∈ 𝐴 ) → ( ∃ 𝑔 ( 𝑔 ∈ 1P ∧ 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ↔ ( 𝑥 <Q 𝑓 ∧ ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ) ) |
| 18 | 1 17 | bitrid | ⊢ ( ( 𝐴 ∈ P ∧ 𝑓 ∈ 𝐴 ) → ( ∃ 𝑔 ∈ 1P 𝑥 = ( 𝑓 ·Q 𝑔 ) ↔ ( 𝑥 <Q 𝑓 ∧ ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ) ) |
| 19 | 18 | rexbidva | ⊢ ( 𝐴 ∈ P → ( ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 1P 𝑥 = ( 𝑓 ·Q 𝑔 ) ↔ ∃ 𝑓 ∈ 𝐴 ( 𝑥 <Q 𝑓 ∧ ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ) ) |
| 20 | 1pr | ⊢ 1P ∈ P | |
| 21 | df-mp | ⊢ ·P = ( 𝑦 ∈ P , 𝑧 ∈ P ↦ { 𝑤 ∣ ∃ 𝑢 ∈ 𝑦 ∃ 𝑣 ∈ 𝑧 𝑤 = ( 𝑢 ·Q 𝑣 ) } ) | |
| 22 | mulclnq | ⊢ ( ( 𝑢 ∈ Q ∧ 𝑣 ∈ Q ) → ( 𝑢 ·Q 𝑣 ) ∈ Q ) | |
| 23 | 21 22 | genpelv | ⊢ ( ( 𝐴 ∈ P ∧ 1P ∈ P ) → ( 𝑥 ∈ ( 𝐴 ·P 1P ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 1P 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ) |
| 24 | 20 23 | mpan2 | ⊢ ( 𝐴 ∈ P → ( 𝑥 ∈ ( 𝐴 ·P 1P ) ↔ ∃ 𝑓 ∈ 𝐴 ∃ 𝑔 ∈ 1P 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ) |
| 25 | prnmax | ⊢ ( ( 𝐴 ∈ P ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑓 ∈ 𝐴 𝑥 <Q 𝑓 ) | |
| 26 | ltrelnq | ⊢ <Q ⊆ ( Q × Q ) | |
| 27 | 26 | brel | ⊢ ( 𝑥 <Q 𝑓 → ( 𝑥 ∈ Q ∧ 𝑓 ∈ Q ) ) |
| 28 | vex | ⊢ 𝑓 ∈ V | |
| 29 | vex | ⊢ 𝑥 ∈ V | |
| 30 | fvex | ⊢ ( *Q ‘ 𝑓 ) ∈ V | |
| 31 | mulcomnq | ⊢ ( 𝑦 ·Q 𝑧 ) = ( 𝑧 ·Q 𝑦 ) | |
| 32 | mulassnq | ⊢ ( ( 𝑦 ·Q 𝑧 ) ·Q 𝑤 ) = ( 𝑦 ·Q ( 𝑧 ·Q 𝑤 ) ) | |
| 33 | 28 29 30 31 32 | caov12 | ⊢ ( 𝑓 ·Q ( 𝑥 ·Q ( *Q ‘ 𝑓 ) ) ) = ( 𝑥 ·Q ( 𝑓 ·Q ( *Q ‘ 𝑓 ) ) ) |
| 34 | recidnq | ⊢ ( 𝑓 ∈ Q → ( 𝑓 ·Q ( *Q ‘ 𝑓 ) ) = 1Q ) | |
| 35 | 34 | oveq2d | ⊢ ( 𝑓 ∈ Q → ( 𝑥 ·Q ( 𝑓 ·Q ( *Q ‘ 𝑓 ) ) ) = ( 𝑥 ·Q 1Q ) ) |
| 36 | 33 35 | eqtrid | ⊢ ( 𝑓 ∈ Q → ( 𝑓 ·Q ( 𝑥 ·Q ( *Q ‘ 𝑓 ) ) ) = ( 𝑥 ·Q 1Q ) ) |
| 37 | mulidnq | ⊢ ( 𝑥 ∈ Q → ( 𝑥 ·Q 1Q ) = 𝑥 ) | |
| 38 | 36 37 | sylan9eqr | ⊢ ( ( 𝑥 ∈ Q ∧ 𝑓 ∈ Q ) → ( 𝑓 ·Q ( 𝑥 ·Q ( *Q ‘ 𝑓 ) ) ) = 𝑥 ) |
| 39 | 38 | eqcomd | ⊢ ( ( 𝑥 ∈ Q ∧ 𝑓 ∈ Q ) → 𝑥 = ( 𝑓 ·Q ( 𝑥 ·Q ( *Q ‘ 𝑓 ) ) ) ) |
| 40 | ovex | ⊢ ( 𝑥 ·Q ( *Q ‘ 𝑓 ) ) ∈ V | |
| 41 | oveq2 | ⊢ ( 𝑔 = ( 𝑥 ·Q ( *Q ‘ 𝑓 ) ) → ( 𝑓 ·Q 𝑔 ) = ( 𝑓 ·Q ( 𝑥 ·Q ( *Q ‘ 𝑓 ) ) ) ) | |
| 42 | 41 | eqeq2d | ⊢ ( 𝑔 = ( 𝑥 ·Q ( *Q ‘ 𝑓 ) ) → ( 𝑥 = ( 𝑓 ·Q 𝑔 ) ↔ 𝑥 = ( 𝑓 ·Q ( 𝑥 ·Q ( *Q ‘ 𝑓 ) ) ) ) ) |
| 43 | 40 42 | spcev | ⊢ ( 𝑥 = ( 𝑓 ·Q ( 𝑥 ·Q ( *Q ‘ 𝑓 ) ) ) → ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) ) |
| 44 | 27 39 43 | 3syl | ⊢ ( 𝑥 <Q 𝑓 → ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) ) |
| 45 | 44 | a1i | ⊢ ( 𝑓 ∈ 𝐴 → ( 𝑥 <Q 𝑓 → ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ) |
| 46 | 45 | ancld | ⊢ ( 𝑓 ∈ 𝐴 → ( 𝑥 <Q 𝑓 → ( 𝑥 <Q 𝑓 ∧ ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ) ) |
| 47 | 46 | reximia | ⊢ ( ∃ 𝑓 ∈ 𝐴 𝑥 <Q 𝑓 → ∃ 𝑓 ∈ 𝐴 ( 𝑥 <Q 𝑓 ∧ ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ) |
| 48 | 25 47 | syl | ⊢ ( ( 𝐴 ∈ P ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑓 ∈ 𝐴 ( 𝑥 <Q 𝑓 ∧ ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ) |
| 49 | 48 | ex | ⊢ ( 𝐴 ∈ P → ( 𝑥 ∈ 𝐴 → ∃ 𝑓 ∈ 𝐴 ( 𝑥 <Q 𝑓 ∧ ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ) ) |
| 50 | prcdnq | ⊢ ( ( 𝐴 ∈ P ∧ 𝑓 ∈ 𝐴 ) → ( 𝑥 <Q 𝑓 → 𝑥 ∈ 𝐴 ) ) | |
| 51 | 50 | adantrd | ⊢ ( ( 𝐴 ∈ P ∧ 𝑓 ∈ 𝐴 ) → ( ( 𝑥 <Q 𝑓 ∧ ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) ) → 𝑥 ∈ 𝐴 ) ) |
| 52 | 51 | rexlimdva | ⊢ ( 𝐴 ∈ P → ( ∃ 𝑓 ∈ 𝐴 ( 𝑥 <Q 𝑓 ∧ ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) ) → 𝑥 ∈ 𝐴 ) ) |
| 53 | 49 52 | impbid | ⊢ ( 𝐴 ∈ P → ( 𝑥 ∈ 𝐴 ↔ ∃ 𝑓 ∈ 𝐴 ( 𝑥 <Q 𝑓 ∧ ∃ 𝑔 𝑥 = ( 𝑓 ·Q 𝑔 ) ) ) ) |
| 54 | 19 24 53 | 3bitr4d | ⊢ ( 𝐴 ∈ P → ( 𝑥 ∈ ( 𝐴 ·P 1P ) ↔ 𝑥 ∈ 𝐴 ) ) |
| 55 | 54 | eqrdv | ⊢ ( 𝐴 ∈ P → ( 𝐴 ·P 1P ) = 𝐴 ) |