This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 1 is an identity element for positive real multiplication. Theorem 9-3.7(iv) of Gleason p. 124. (Contributed by NM, 2-Apr-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1idpr | |- ( A e. P. -> ( A .P. 1P ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex | |- ( E. g e. 1P x = ( f .Q g ) <-> E. g ( g e. 1P /\ x = ( f .Q g ) ) ) |
|
| 2 | elprnq | |- ( ( A e. P. /\ f e. A ) -> f e. Q. ) |
|
| 3 | breq1 | |- ( x = ( f .Q g ) -> ( x( f .Q g ) |
|
| 4 | df-1p | |- 1P = { g | g |
|
| 5 | 4 | eqabri | |- ( g e. 1P <-> g |
| 6 | ltmnq | |- ( f e. Q. -> ( g( f .Q g ) |
|
| 7 | mulidnq | |- ( f e. Q. -> ( f .Q 1Q ) = f ) |
|
| 8 | 7 | breq2d | |- ( f e. Q. -> ( ( f .Q g )( f .Q g ) |
| 9 | 6 8 | bitrd | |- ( f e. Q. -> ( g( f .Q g ) |
| 10 | 5 9 | bitr2id | |- ( f e. Q. -> ( ( f .Q g )g e. 1P ) ) |
| 11 | 3 10 | sylan9bbr | |- ( ( f e. Q. /\ x = ( f .Q g ) ) -> ( xg e. 1P ) ) |
| 12 | 2 11 | sylan | |- ( ( ( A e. P. /\ f e. A ) /\ x = ( f .Q g ) ) -> ( xg e. 1P ) ) |
| 13 | 12 | ex | |- ( ( A e. P. /\ f e. A ) -> ( x = ( f .Q g ) -> ( xg e. 1P ) ) ) |
| 14 | 13 | pm5.32rd | |- ( ( A e. P. /\ f e. A ) -> ( ( x( g e. 1P /\ x = ( f .Q g ) ) ) ) |
| 15 | 14 | exbidv | |- ( ( A e. P. /\ f e. A ) -> ( E. g ( xE. g ( g e. 1P /\ x = ( f .Q g ) ) ) ) |
| 16 | 19.42v | |- ( E. g ( x( x |
|
| 17 | 15 16 | bitr3di | |- ( ( A e. P. /\ f e. A ) -> ( E. g ( g e. 1P /\ x = ( f .Q g ) ) <-> ( x |
| 18 | 1 17 | bitrid | |- ( ( A e. P. /\ f e. A ) -> ( E. g e. 1P x = ( f .Q g ) <-> ( x |
| 19 | 18 | rexbidva | |- ( A e. P. -> ( E. f e. A E. g e. 1P x = ( f .Q g ) <-> E. f e. A ( x |
| 20 | 1pr | |- 1P e. P. |
|
| 21 | df-mp | |- .P. = ( y e. P. , z e. P. |-> { w | E. u e. y E. v e. z w = ( u .Q v ) } ) |
|
| 22 | mulclnq | |- ( ( u e. Q. /\ v e. Q. ) -> ( u .Q v ) e. Q. ) |
|
| 23 | 21 22 | genpelv | |- ( ( A e. P. /\ 1P e. P. ) -> ( x e. ( A .P. 1P ) <-> E. f e. A E. g e. 1P x = ( f .Q g ) ) ) |
| 24 | 20 23 | mpan2 | |- ( A e. P. -> ( x e. ( A .P. 1P ) <-> E. f e. A E. g e. 1P x = ( f .Q g ) ) ) |
| 25 | prnmax | |- ( ( A e. P. /\ x e. A ) -> E. f e. A x |
|
| 26 | ltrelnq | |- |
|
| 27 | 26 | brel | |- ( x( x e. Q. /\ f e. Q. ) ) |
| 28 | vex | |- f e. _V |
|
| 29 | vex | |- x e. _V |
|
| 30 | fvex | |- ( *Q ` f ) e. _V |
|
| 31 | mulcomnq | |- ( y .Q z ) = ( z .Q y ) |
|
| 32 | mulassnq | |- ( ( y .Q z ) .Q w ) = ( y .Q ( z .Q w ) ) |
|
| 33 | 28 29 30 31 32 | caov12 | |- ( f .Q ( x .Q ( *Q ` f ) ) ) = ( x .Q ( f .Q ( *Q ` f ) ) ) |
| 34 | recidnq | |- ( f e. Q. -> ( f .Q ( *Q ` f ) ) = 1Q ) |
|
| 35 | 34 | oveq2d | |- ( f e. Q. -> ( x .Q ( f .Q ( *Q ` f ) ) ) = ( x .Q 1Q ) ) |
| 36 | 33 35 | eqtrid | |- ( f e. Q. -> ( f .Q ( x .Q ( *Q ` f ) ) ) = ( x .Q 1Q ) ) |
| 37 | mulidnq | |- ( x e. Q. -> ( x .Q 1Q ) = x ) |
|
| 38 | 36 37 | sylan9eqr | |- ( ( x e. Q. /\ f e. Q. ) -> ( f .Q ( x .Q ( *Q ` f ) ) ) = x ) |
| 39 | 38 | eqcomd | |- ( ( x e. Q. /\ f e. Q. ) -> x = ( f .Q ( x .Q ( *Q ` f ) ) ) ) |
| 40 | ovex | |- ( x .Q ( *Q ` f ) ) e. _V |
|
| 41 | oveq2 | |- ( g = ( x .Q ( *Q ` f ) ) -> ( f .Q g ) = ( f .Q ( x .Q ( *Q ` f ) ) ) ) |
|
| 42 | 41 | eqeq2d | |- ( g = ( x .Q ( *Q ` f ) ) -> ( x = ( f .Q g ) <-> x = ( f .Q ( x .Q ( *Q ` f ) ) ) ) ) |
| 43 | 40 42 | spcev | |- ( x = ( f .Q ( x .Q ( *Q ` f ) ) ) -> E. g x = ( f .Q g ) ) |
| 44 | 27 39 43 | 3syl | |- ( xE. g x = ( f .Q g ) ) |
| 45 | 44 | a1i | |- ( f e. A -> ( xE. g x = ( f .Q g ) ) ) |
| 46 | 45 | ancld | |- ( f e. A -> ( x( x |
| 47 | 46 | reximia | |- ( E. f e. A xE. f e. A ( x |
| 48 | 25 47 | syl | |- ( ( A e. P. /\ x e. A ) -> E. f e. A ( x |
| 49 | 48 | ex | |- ( A e. P. -> ( x e. A -> E. f e. A ( x |
| 50 | prcdnq | |- ( ( A e. P. /\ f e. A ) -> ( xx e. A ) ) |
|
| 51 | 50 | adantrd | |- ( ( A e. P. /\ f e. A ) -> ( ( xx e. A ) ) |
| 52 | 51 | rexlimdva | |- ( A e. P. -> ( E. f e. A ( xx e. A ) ) |
| 53 | 49 52 | impbid | |- ( A e. P. -> ( x e. A <-> E. f e. A ( x |
| 54 | 19 24 53 | 3bitr4d | |- ( A e. P. -> ( x e. ( A .P. 1P ) <-> x e. A ) ) |
| 55 | 54 | eqrdv | |- ( A e. P. -> ( A .P. 1P ) = A ) |