This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The complex numbers form a division ring. (Contributed by Stefan O'Rear, 27-Nov-2014) Avoid ax-mulf . (Revised by GG, 30-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cndrng | |- CCfld e. DivRing |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 2 | 1 | a1i | |- ( T. -> CC = ( Base ` CCfld ) ) |
| 3 | mpocnfldmul | |- ( u e. CC , v e. CC |-> ( u x. v ) ) = ( .r ` CCfld ) |
|
| 4 | 3 | a1i | |- ( T. -> ( u e. CC , v e. CC |-> ( u x. v ) ) = ( .r ` CCfld ) ) |
| 5 | cnfld0 | |- 0 = ( 0g ` CCfld ) |
|
| 6 | 5 | a1i | |- ( T. -> 0 = ( 0g ` CCfld ) ) |
| 7 | cnfld1 | |- 1 = ( 1r ` CCfld ) |
|
| 8 | 7 | a1i | |- ( T. -> 1 = ( 1r ` CCfld ) ) |
| 9 | cnring | |- CCfld e. Ring |
|
| 10 | 9 | a1i | |- ( T. -> CCfld e. Ring ) |
| 11 | ovmpot | |- ( ( x e. CC /\ y e. CC ) -> ( x ( u e. CC , v e. CC |-> ( u x. v ) ) y ) = ( x x. y ) ) |
|
| 12 | 11 | ad2ant2r | |- ( ( ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( x ( u e. CC , v e. CC |-> ( u x. v ) ) y ) = ( x x. y ) ) |
| 13 | mulne0 | |- ( ( ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( x x. y ) =/= 0 ) |
|
| 14 | 12 13 | eqnetrd | |- ( ( ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( x ( u e. CC , v e. CC |-> ( u x. v ) ) y ) =/= 0 ) |
| 15 | 14 | 3adant1 | |- ( ( T. /\ ( x e. CC /\ x =/= 0 ) /\ ( y e. CC /\ y =/= 0 ) ) -> ( x ( u e. CC , v e. CC |-> ( u x. v ) ) y ) =/= 0 ) |
| 16 | ax-1ne0 | |- 1 =/= 0 |
|
| 17 | 16 | a1i | |- ( T. -> 1 =/= 0 ) |
| 18 | reccl | |- ( ( x e. CC /\ x =/= 0 ) -> ( 1 / x ) e. CC ) |
|
| 19 | 18 | adantl | |- ( ( T. /\ ( x e. CC /\ x =/= 0 ) ) -> ( 1 / x ) e. CC ) |
| 20 | simpl | |- ( ( x e. CC /\ x =/= 0 ) -> x e. CC ) |
|
| 21 | ovmpot | |- ( ( ( 1 / x ) e. CC /\ x e. CC ) -> ( ( 1 / x ) ( u e. CC , v e. CC |-> ( u x. v ) ) x ) = ( ( 1 / x ) x. x ) ) |
|
| 22 | 18 20 21 | syl2anc | |- ( ( x e. CC /\ x =/= 0 ) -> ( ( 1 / x ) ( u e. CC , v e. CC |-> ( u x. v ) ) x ) = ( ( 1 / x ) x. x ) ) |
| 23 | recid2 | |- ( ( x e. CC /\ x =/= 0 ) -> ( ( 1 / x ) x. x ) = 1 ) |
|
| 24 | 22 23 | eqtrd | |- ( ( x e. CC /\ x =/= 0 ) -> ( ( 1 / x ) ( u e. CC , v e. CC |-> ( u x. v ) ) x ) = 1 ) |
| 25 | 24 | adantl | |- ( ( T. /\ ( x e. CC /\ x =/= 0 ) ) -> ( ( 1 / x ) ( u e. CC , v e. CC |-> ( u x. v ) ) x ) = 1 ) |
| 26 | 2 4 6 8 10 15 17 19 25 | isdrngd | |- ( T. -> CCfld e. DivRing ) |
| 27 | 26 | mptru | |- CCfld e. DivRing |