This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One direction of resmhm2b . (Contributed by Mario Carneiro, 18-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | resmhm2.u | |- U = ( T |`s X ) |
|
| Assertion | resmhm2 | |- ( ( F e. ( S MndHom U ) /\ X e. ( SubMnd ` T ) ) -> F e. ( S MndHom T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resmhm2.u | |- U = ( T |`s X ) |
|
| 2 | mhmrcl1 | |- ( F e. ( S MndHom U ) -> S e. Mnd ) |
|
| 3 | submrcl | |- ( X e. ( SubMnd ` T ) -> T e. Mnd ) |
|
| 4 | 2 3 | anim12i | |- ( ( F e. ( S MndHom U ) /\ X e. ( SubMnd ` T ) ) -> ( S e. Mnd /\ T e. Mnd ) ) |
| 5 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 6 | eqid | |- ( Base ` U ) = ( Base ` U ) |
|
| 7 | 5 6 | mhmf | |- ( F e. ( S MndHom U ) -> F : ( Base ` S ) --> ( Base ` U ) ) |
| 8 | 1 | submbas | |- ( X e. ( SubMnd ` T ) -> X = ( Base ` U ) ) |
| 9 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 10 | 9 | submss | |- ( X e. ( SubMnd ` T ) -> X C_ ( Base ` T ) ) |
| 11 | 8 10 | eqsstrrd | |- ( X e. ( SubMnd ` T ) -> ( Base ` U ) C_ ( Base ` T ) ) |
| 12 | fss | |- ( ( F : ( Base ` S ) --> ( Base ` U ) /\ ( Base ` U ) C_ ( Base ` T ) ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
|
| 13 | 7 11 12 | syl2an | |- ( ( F e. ( S MndHom U ) /\ X e. ( SubMnd ` T ) ) -> F : ( Base ` S ) --> ( Base ` T ) ) |
| 14 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 15 | eqid | |- ( +g ` U ) = ( +g ` U ) |
|
| 16 | 5 14 15 | mhmlin | |- ( ( F e. ( S MndHom U ) /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ) |
| 17 | 16 | 3expb | |- ( ( F e. ( S MndHom U ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ) |
| 18 | 17 | adantlr | |- ( ( ( F e. ( S MndHom U ) /\ X e. ( SubMnd ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ) |
| 19 | eqid | |- ( +g ` T ) = ( +g ` T ) |
|
| 20 | 1 19 | ressplusg | |- ( X e. ( SubMnd ` T ) -> ( +g ` T ) = ( +g ` U ) ) |
| 21 | 20 | ad2antlr | |- ( ( ( F e. ( S MndHom U ) /\ X e. ( SubMnd ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( +g ` T ) = ( +g ` U ) ) |
| 22 | 21 | oveqd | |- ( ( ( F e. ( S MndHom U ) /\ X e. ( SubMnd ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( ( F ` x ) ( +g ` T ) ( F ` y ) ) = ( ( F ` x ) ( +g ` U ) ( F ` y ) ) ) |
| 23 | 18 22 | eqtr4d | |- ( ( ( F e. ( S MndHom U ) /\ X e. ( SubMnd ` T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
| 24 | 23 | ralrimivva | |- ( ( F e. ( S MndHom U ) /\ X e. ( SubMnd ` T ) ) -> A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) ) |
| 25 | eqid | |- ( 0g ` S ) = ( 0g ` S ) |
|
| 26 | eqid | |- ( 0g ` U ) = ( 0g ` U ) |
|
| 27 | 25 26 | mhm0 | |- ( F e. ( S MndHom U ) -> ( F ` ( 0g ` S ) ) = ( 0g ` U ) ) |
| 28 | 27 | adantr | |- ( ( F e. ( S MndHom U ) /\ X e. ( SubMnd ` T ) ) -> ( F ` ( 0g ` S ) ) = ( 0g ` U ) ) |
| 29 | eqid | |- ( 0g ` T ) = ( 0g ` T ) |
|
| 30 | 1 29 | subm0 | |- ( X e. ( SubMnd ` T ) -> ( 0g ` T ) = ( 0g ` U ) ) |
| 31 | 30 | adantl | |- ( ( F e. ( S MndHom U ) /\ X e. ( SubMnd ` T ) ) -> ( 0g ` T ) = ( 0g ` U ) ) |
| 32 | 28 31 | eqtr4d | |- ( ( F e. ( S MndHom U ) /\ X e. ( SubMnd ` T ) ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) |
| 33 | 13 24 32 | 3jca | |- ( ( F e. ( S MndHom U ) /\ X e. ( SubMnd ` T ) ) -> ( F : ( Base ` S ) --> ( Base ` T ) /\ A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) /\ ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) ) |
| 34 | 5 9 14 19 25 29 | ismhm | |- ( F e. ( S MndHom T ) <-> ( ( S e. Mnd /\ T e. Mnd ) /\ ( F : ( Base ` S ) --> ( Base ` T ) /\ A. x e. ( Base ` S ) A. y e. ( Base ` S ) ( F ` ( x ( +g ` S ) y ) ) = ( ( F ` x ) ( +g ` T ) ( F ` y ) ) /\ ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) ) ) |
| 35 | 4 33 34 | sylanbrc | |- ( ( F e. ( S MndHom U ) /\ X e. ( SubMnd ` T ) ) -> F e. ( S MndHom T ) ) |