This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The signs form a multiplicative subgroup of the complex numbers. (Contributed by Stefan O'Rear, 28-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnmsgnsubg.m | |- M = ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |
|
| Assertion | cnmsgnsubg | |- { 1 , -u 1 } e. ( SubGrp ` M ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmsgnsubg.m | |- M = ( ( mulGrp ` CCfld ) |`s ( CC \ { 0 } ) ) |
|
| 2 | elpri | |- ( x e. { 1 , -u 1 } -> ( x = 1 \/ x = -u 1 ) ) |
|
| 3 | id | |- ( x = 1 -> x = 1 ) |
|
| 4 | ax-1cn | |- 1 e. CC |
|
| 5 | 3 4 | eqeltrdi | |- ( x = 1 -> x e. CC ) |
| 6 | id | |- ( x = -u 1 -> x = -u 1 ) |
|
| 7 | neg1cn | |- -u 1 e. CC |
|
| 8 | 6 7 | eqeltrdi | |- ( x = -u 1 -> x e. CC ) |
| 9 | 5 8 | jaoi | |- ( ( x = 1 \/ x = -u 1 ) -> x e. CC ) |
| 10 | 2 9 | syl | |- ( x e. { 1 , -u 1 } -> x e. CC ) |
| 11 | ax-1ne0 | |- 1 =/= 0 |
|
| 12 | 11 | a1i | |- ( x = 1 -> 1 =/= 0 ) |
| 13 | 3 12 | eqnetrd | |- ( x = 1 -> x =/= 0 ) |
| 14 | neg1ne0 | |- -u 1 =/= 0 |
|
| 15 | 14 | a1i | |- ( x = -u 1 -> -u 1 =/= 0 ) |
| 16 | 6 15 | eqnetrd | |- ( x = -u 1 -> x =/= 0 ) |
| 17 | 13 16 | jaoi | |- ( ( x = 1 \/ x = -u 1 ) -> x =/= 0 ) |
| 18 | 2 17 | syl | |- ( x e. { 1 , -u 1 } -> x =/= 0 ) |
| 19 | elpri | |- ( y e. { 1 , -u 1 } -> ( y = 1 \/ y = -u 1 ) ) |
|
| 20 | oveq12 | |- ( ( x = 1 /\ y = 1 ) -> ( x x. y ) = ( 1 x. 1 ) ) |
|
| 21 | 4 | mulridi | |- ( 1 x. 1 ) = 1 |
| 22 | 1ex | |- 1 e. _V |
|
| 23 | 22 | prid1 | |- 1 e. { 1 , -u 1 } |
| 24 | 21 23 | eqeltri | |- ( 1 x. 1 ) e. { 1 , -u 1 } |
| 25 | 20 24 | eqeltrdi | |- ( ( x = 1 /\ y = 1 ) -> ( x x. y ) e. { 1 , -u 1 } ) |
| 26 | oveq12 | |- ( ( x = -u 1 /\ y = 1 ) -> ( x x. y ) = ( -u 1 x. 1 ) ) |
|
| 27 | 7 | mulridi | |- ( -u 1 x. 1 ) = -u 1 |
| 28 | negex | |- -u 1 e. _V |
|
| 29 | 28 | prid2 | |- -u 1 e. { 1 , -u 1 } |
| 30 | 27 29 | eqeltri | |- ( -u 1 x. 1 ) e. { 1 , -u 1 } |
| 31 | 26 30 | eqeltrdi | |- ( ( x = -u 1 /\ y = 1 ) -> ( x x. y ) e. { 1 , -u 1 } ) |
| 32 | oveq12 | |- ( ( x = 1 /\ y = -u 1 ) -> ( x x. y ) = ( 1 x. -u 1 ) ) |
|
| 33 | 7 | mullidi | |- ( 1 x. -u 1 ) = -u 1 |
| 34 | 33 29 | eqeltri | |- ( 1 x. -u 1 ) e. { 1 , -u 1 } |
| 35 | 32 34 | eqeltrdi | |- ( ( x = 1 /\ y = -u 1 ) -> ( x x. y ) e. { 1 , -u 1 } ) |
| 36 | oveq12 | |- ( ( x = -u 1 /\ y = -u 1 ) -> ( x x. y ) = ( -u 1 x. -u 1 ) ) |
|
| 37 | neg1mulneg1e1 | |- ( -u 1 x. -u 1 ) = 1 |
|
| 38 | 37 23 | eqeltri | |- ( -u 1 x. -u 1 ) e. { 1 , -u 1 } |
| 39 | 36 38 | eqeltrdi | |- ( ( x = -u 1 /\ y = -u 1 ) -> ( x x. y ) e. { 1 , -u 1 } ) |
| 40 | 25 31 35 39 | ccase | |- ( ( ( x = 1 \/ x = -u 1 ) /\ ( y = 1 \/ y = -u 1 ) ) -> ( x x. y ) e. { 1 , -u 1 } ) |
| 41 | 2 19 40 | syl2an | |- ( ( x e. { 1 , -u 1 } /\ y e. { 1 , -u 1 } ) -> ( x x. y ) e. { 1 , -u 1 } ) |
| 42 | oveq2 | |- ( x = 1 -> ( 1 / x ) = ( 1 / 1 ) ) |
|
| 43 | 1div1e1 | |- ( 1 / 1 ) = 1 |
|
| 44 | 43 23 | eqeltri | |- ( 1 / 1 ) e. { 1 , -u 1 } |
| 45 | 42 44 | eqeltrdi | |- ( x = 1 -> ( 1 / x ) e. { 1 , -u 1 } ) |
| 46 | oveq2 | |- ( x = -u 1 -> ( 1 / x ) = ( 1 / -u 1 ) ) |
|
| 47 | divneg2 | |- ( ( 1 e. CC /\ 1 e. CC /\ 1 =/= 0 ) -> -u ( 1 / 1 ) = ( 1 / -u 1 ) ) |
|
| 48 | 4 4 11 47 | mp3an | |- -u ( 1 / 1 ) = ( 1 / -u 1 ) |
| 49 | 43 | negeqi | |- -u ( 1 / 1 ) = -u 1 |
| 50 | 48 49 | eqtr3i | |- ( 1 / -u 1 ) = -u 1 |
| 51 | 50 29 | eqeltri | |- ( 1 / -u 1 ) e. { 1 , -u 1 } |
| 52 | 46 51 | eqeltrdi | |- ( x = -u 1 -> ( 1 / x ) e. { 1 , -u 1 } ) |
| 53 | 45 52 | jaoi | |- ( ( x = 1 \/ x = -u 1 ) -> ( 1 / x ) e. { 1 , -u 1 } ) |
| 54 | 2 53 | syl | |- ( x e. { 1 , -u 1 } -> ( 1 / x ) e. { 1 , -u 1 } ) |
| 55 | 1 10 18 41 23 54 | cnmsubglem | |- { 1 , -u 1 } e. ( SubGrp ` M ) |