This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group of units is a submonoid of the multiplicative monoid of the ring. (Contributed by Mario Carneiro, 18-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | unitsubm.1 | |- U = ( Unit ` R ) |
|
| unitsubm.2 | |- M = ( mulGrp ` R ) |
||
| Assertion | unitsubm | |- ( R e. Ring -> U e. ( SubMnd ` M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitsubm.1 | |- U = ( Unit ` R ) |
|
| 2 | unitsubm.2 | |- M = ( mulGrp ` R ) |
|
| 3 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 4 | 3 1 | unitss | |- U C_ ( Base ` R ) |
| 5 | 4 | a1i | |- ( R e. Ring -> U C_ ( Base ` R ) ) |
| 6 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 7 | 1 6 | 1unit | |- ( R e. Ring -> ( 1r ` R ) e. U ) |
| 8 | 2 | oveq1i | |- ( M |`s U ) = ( ( mulGrp ` R ) |`s U ) |
| 9 | 1 8 | unitgrp | |- ( R e. Ring -> ( M |`s U ) e. Grp ) |
| 10 | 9 | grpmndd | |- ( R e. Ring -> ( M |`s U ) e. Mnd ) |
| 11 | 2 | ringmgp | |- ( R e. Ring -> M e. Mnd ) |
| 12 | 2 3 | mgpbas | |- ( Base ` R ) = ( Base ` M ) |
| 13 | 2 6 | ringidval | |- ( 1r ` R ) = ( 0g ` M ) |
| 14 | eqid | |- ( M |`s U ) = ( M |`s U ) |
|
| 15 | 12 13 14 | issubm2 | |- ( M e. Mnd -> ( U e. ( SubMnd ` M ) <-> ( U C_ ( Base ` R ) /\ ( 1r ` R ) e. U /\ ( M |`s U ) e. Mnd ) ) ) |
| 16 | 11 15 | syl | |- ( R e. Ring -> ( U e. ( SubMnd ` M ) <-> ( U C_ ( Base ` R ) /\ ( 1r ` R ) e. U /\ ( M |`s U ) e. Mnd ) ) ) |
| 17 | 5 7 10 16 | mpbir3and | |- ( R e. Ring -> U e. ( SubMnd ` M ) ) |