This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A submonoid of a submonoid is a submonoid. (Contributed by Mario Carneiro, 21-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subsubm.h | |- H = ( G |`s S ) |
|
| Assertion | subsubm | |- ( S e. ( SubMnd ` G ) -> ( A e. ( SubMnd ` H ) <-> ( A e. ( SubMnd ` G ) /\ A C_ S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subsubm.h | |- H = ( G |`s S ) |
|
| 2 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 3 | 2 | submss | |- ( A e. ( SubMnd ` H ) -> A C_ ( Base ` H ) ) |
| 4 | 3 | adantl | |- ( ( S e. ( SubMnd ` G ) /\ A e. ( SubMnd ` H ) ) -> A C_ ( Base ` H ) ) |
| 5 | 1 | submbas | |- ( S e. ( SubMnd ` G ) -> S = ( Base ` H ) ) |
| 6 | 5 | adantr | |- ( ( S e. ( SubMnd ` G ) /\ A e. ( SubMnd ` H ) ) -> S = ( Base ` H ) ) |
| 7 | 4 6 | sseqtrrd | |- ( ( S e. ( SubMnd ` G ) /\ A e. ( SubMnd ` H ) ) -> A C_ S ) |
| 8 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 9 | 8 | submss | |- ( S e. ( SubMnd ` G ) -> S C_ ( Base ` G ) ) |
| 10 | 9 | adantr | |- ( ( S e. ( SubMnd ` G ) /\ A e. ( SubMnd ` H ) ) -> S C_ ( Base ` G ) ) |
| 11 | 7 10 | sstrd | |- ( ( S e. ( SubMnd ` G ) /\ A e. ( SubMnd ` H ) ) -> A C_ ( Base ` G ) ) |
| 12 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 13 | 1 12 | subm0 | |- ( S e. ( SubMnd ` G ) -> ( 0g ` G ) = ( 0g ` H ) ) |
| 14 | 13 | adantr | |- ( ( S e. ( SubMnd ` G ) /\ A e. ( SubMnd ` H ) ) -> ( 0g ` G ) = ( 0g ` H ) ) |
| 15 | eqid | |- ( 0g ` H ) = ( 0g ` H ) |
|
| 16 | 15 | subm0cl | |- ( A e. ( SubMnd ` H ) -> ( 0g ` H ) e. A ) |
| 17 | 16 | adantl | |- ( ( S e. ( SubMnd ` G ) /\ A e. ( SubMnd ` H ) ) -> ( 0g ` H ) e. A ) |
| 18 | 14 17 | eqeltrd | |- ( ( S e. ( SubMnd ` G ) /\ A e. ( SubMnd ` H ) ) -> ( 0g ` G ) e. A ) |
| 19 | 1 | oveq1i | |- ( H |`s A ) = ( ( G |`s S ) |`s A ) |
| 20 | ressabs | |- ( ( S e. ( SubMnd ` G ) /\ A C_ S ) -> ( ( G |`s S ) |`s A ) = ( G |`s A ) ) |
|
| 21 | 19 20 | eqtrid | |- ( ( S e. ( SubMnd ` G ) /\ A C_ S ) -> ( H |`s A ) = ( G |`s A ) ) |
| 22 | 7 21 | syldan | |- ( ( S e. ( SubMnd ` G ) /\ A e. ( SubMnd ` H ) ) -> ( H |`s A ) = ( G |`s A ) ) |
| 23 | eqid | |- ( H |`s A ) = ( H |`s A ) |
|
| 24 | 23 | submmnd | |- ( A e. ( SubMnd ` H ) -> ( H |`s A ) e. Mnd ) |
| 25 | 24 | adantl | |- ( ( S e. ( SubMnd ` G ) /\ A e. ( SubMnd ` H ) ) -> ( H |`s A ) e. Mnd ) |
| 26 | 22 25 | eqeltrrd | |- ( ( S e. ( SubMnd ` G ) /\ A e. ( SubMnd ` H ) ) -> ( G |`s A ) e. Mnd ) |
| 27 | submrcl | |- ( S e. ( SubMnd ` G ) -> G e. Mnd ) |
|
| 28 | 27 | adantr | |- ( ( S e. ( SubMnd ` G ) /\ A e. ( SubMnd ` H ) ) -> G e. Mnd ) |
| 29 | eqid | |- ( G |`s A ) = ( G |`s A ) |
|
| 30 | 8 12 29 | issubm2 | |- ( G e. Mnd -> ( A e. ( SubMnd ` G ) <-> ( A C_ ( Base ` G ) /\ ( 0g ` G ) e. A /\ ( G |`s A ) e. Mnd ) ) ) |
| 31 | 28 30 | syl | |- ( ( S e. ( SubMnd ` G ) /\ A e. ( SubMnd ` H ) ) -> ( A e. ( SubMnd ` G ) <-> ( A C_ ( Base ` G ) /\ ( 0g ` G ) e. A /\ ( G |`s A ) e. Mnd ) ) ) |
| 32 | 11 18 26 31 | mpbir3and | |- ( ( S e. ( SubMnd ` G ) /\ A e. ( SubMnd ` H ) ) -> A e. ( SubMnd ` G ) ) |
| 33 | 32 7 | jca | |- ( ( S e. ( SubMnd ` G ) /\ A e. ( SubMnd ` H ) ) -> ( A e. ( SubMnd ` G ) /\ A C_ S ) ) |
| 34 | simprr | |- ( ( S e. ( SubMnd ` G ) /\ ( A e. ( SubMnd ` G ) /\ A C_ S ) ) -> A C_ S ) |
|
| 35 | 5 | adantr | |- ( ( S e. ( SubMnd ` G ) /\ ( A e. ( SubMnd ` G ) /\ A C_ S ) ) -> S = ( Base ` H ) ) |
| 36 | 34 35 | sseqtrd | |- ( ( S e. ( SubMnd ` G ) /\ ( A e. ( SubMnd ` G ) /\ A C_ S ) ) -> A C_ ( Base ` H ) ) |
| 37 | 13 | adantr | |- ( ( S e. ( SubMnd ` G ) /\ ( A e. ( SubMnd ` G ) /\ A C_ S ) ) -> ( 0g ` G ) = ( 0g ` H ) ) |
| 38 | 12 | subm0cl | |- ( A e. ( SubMnd ` G ) -> ( 0g ` G ) e. A ) |
| 39 | 38 | ad2antrl | |- ( ( S e. ( SubMnd ` G ) /\ ( A e. ( SubMnd ` G ) /\ A C_ S ) ) -> ( 0g ` G ) e. A ) |
| 40 | 37 39 | eqeltrrd | |- ( ( S e. ( SubMnd ` G ) /\ ( A e. ( SubMnd ` G ) /\ A C_ S ) ) -> ( 0g ` H ) e. A ) |
| 41 | 21 | adantrl | |- ( ( S e. ( SubMnd ` G ) /\ ( A e. ( SubMnd ` G ) /\ A C_ S ) ) -> ( H |`s A ) = ( G |`s A ) ) |
| 42 | 29 | submmnd | |- ( A e. ( SubMnd ` G ) -> ( G |`s A ) e. Mnd ) |
| 43 | 42 | ad2antrl | |- ( ( S e. ( SubMnd ` G ) /\ ( A e. ( SubMnd ` G ) /\ A C_ S ) ) -> ( G |`s A ) e. Mnd ) |
| 44 | 41 43 | eqeltrd | |- ( ( S e. ( SubMnd ` G ) /\ ( A e. ( SubMnd ` G ) /\ A C_ S ) ) -> ( H |`s A ) e. Mnd ) |
| 45 | 1 | submmnd | |- ( S e. ( SubMnd ` G ) -> H e. Mnd ) |
| 46 | 45 | adantr | |- ( ( S e. ( SubMnd ` G ) /\ ( A e. ( SubMnd ` G ) /\ A C_ S ) ) -> H e. Mnd ) |
| 47 | 2 15 23 | issubm2 | |- ( H e. Mnd -> ( A e. ( SubMnd ` H ) <-> ( A C_ ( Base ` H ) /\ ( 0g ` H ) e. A /\ ( H |`s A ) e. Mnd ) ) ) |
| 48 | 46 47 | syl | |- ( ( S e. ( SubMnd ` G ) /\ ( A e. ( SubMnd ` G ) /\ A C_ S ) ) -> ( A e. ( SubMnd ` H ) <-> ( A C_ ( Base ` H ) /\ ( 0g ` H ) e. A /\ ( H |`s A ) e. Mnd ) ) ) |
| 49 | 36 40 44 48 | mpbir3and | |- ( ( S e. ( SubMnd ` G ) /\ ( A e. ( SubMnd ` G ) /\ A C_ S ) ) -> A e. ( SubMnd ` H ) ) |
| 50 | 33 49 | impbida | |- ( S e. ( SubMnd ` G ) -> ( A e. ( SubMnd ` H ) <-> ( A e. ( SubMnd ` G ) /\ A C_ S ) ) ) |