This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction absorption law. (Contributed by Mario Carneiro, 12-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ressabs | |- ( ( A e. X /\ B C_ A ) -> ( ( W |`s A ) |`s B ) = ( W |`s B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssexg | |- ( ( B C_ A /\ A e. X ) -> B e. _V ) |
|
| 2 | 1 | ancoms | |- ( ( A e. X /\ B C_ A ) -> B e. _V ) |
| 3 | ressress | |- ( ( A e. X /\ B e. _V ) -> ( ( W |`s A ) |`s B ) = ( W |`s ( A i^i B ) ) ) |
|
| 4 | 2 3 | syldan | |- ( ( A e. X /\ B C_ A ) -> ( ( W |`s A ) |`s B ) = ( W |`s ( A i^i B ) ) ) |
| 5 | simpr | |- ( ( A e. X /\ B C_ A ) -> B C_ A ) |
|
| 6 | sseqin2 | |- ( B C_ A <-> ( A i^i B ) = B ) |
|
| 7 | 5 6 | sylib | |- ( ( A e. X /\ B C_ A ) -> ( A i^i B ) = B ) |
| 8 | 7 | oveq2d | |- ( ( A e. X /\ B C_ A ) -> ( W |`s ( A i^i B ) ) = ( W |`s B ) ) |
| 9 | 4 8 | eqtrd | |- ( ( A e. X /\ B C_ A ) -> ( ( W |`s A ) |`s B ) = ( W |`s B ) ) |