This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The embedded sign of a permutation equals the embedded sign of the inverse of the permutation. (Contributed by SO, 9-Jul-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zrhpsgninv.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| zrhpsgninv.y | |- Y = ( ZRHom ` R ) |
||
| zrhpsgninv.s | |- S = ( pmSgn ` N ) |
||
| Assertion | zrhpsgninv | |- ( ( R e. Ring /\ N e. Fin /\ F e. P ) -> ( ( Y o. S ) ` `' F ) = ( ( Y o. S ) ` F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrhpsgninv.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| 2 | zrhpsgninv.y | |- Y = ( ZRHom ` R ) |
|
| 3 | zrhpsgninv.s | |- S = ( pmSgn ` N ) |
|
| 4 | eqid | |- ( SymGrp ` N ) = ( SymGrp ` N ) |
|
| 5 | 4 3 1 | psgninv | |- ( ( N e. Fin /\ F e. P ) -> ( S ` `' F ) = ( S ` F ) ) |
| 6 | 5 | 3adant1 | |- ( ( R e. Ring /\ N e. Fin /\ F e. P ) -> ( S ` `' F ) = ( S ` F ) ) |
| 7 | 6 | fveq2d | |- ( ( R e. Ring /\ N e. Fin /\ F e. P ) -> ( Y ` ( S ` `' F ) ) = ( Y ` ( S ` F ) ) ) |
| 8 | eqid | |- ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) |
|
| 9 | 4 3 8 | psgnghm2 | |- ( N e. Fin -> S e. ( ( SymGrp ` N ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 10 | eqid | |- ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) = ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) |
|
| 11 | 1 10 | ghmf | |- ( S e. ( ( SymGrp ` N ) GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) -> S : P --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 12 | 9 11 | syl | |- ( N e. Fin -> S : P --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 13 | 12 | 3ad2ant2 | |- ( ( R e. Ring /\ N e. Fin /\ F e. P ) -> S : P --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 14 | eqid | |- ( invg ` ( SymGrp ` N ) ) = ( invg ` ( SymGrp ` N ) ) |
|
| 15 | 4 1 14 | symginv | |- ( F e. P -> ( ( invg ` ( SymGrp ` N ) ) ` F ) = `' F ) |
| 16 | 15 | 3ad2ant3 | |- ( ( R e. Ring /\ N e. Fin /\ F e. P ) -> ( ( invg ` ( SymGrp ` N ) ) ` F ) = `' F ) |
| 17 | 4 | symggrp | |- ( N e. Fin -> ( SymGrp ` N ) e. Grp ) |
| 18 | 17 | 3ad2ant2 | |- ( ( R e. Ring /\ N e. Fin /\ F e. P ) -> ( SymGrp ` N ) e. Grp ) |
| 19 | simp3 | |- ( ( R e. Ring /\ N e. Fin /\ F e. P ) -> F e. P ) |
|
| 20 | 1 14 | grpinvcl | |- ( ( ( SymGrp ` N ) e. Grp /\ F e. P ) -> ( ( invg ` ( SymGrp ` N ) ) ` F ) e. P ) |
| 21 | 18 19 20 | syl2anc | |- ( ( R e. Ring /\ N e. Fin /\ F e. P ) -> ( ( invg ` ( SymGrp ` N ) ) ` F ) e. P ) |
| 22 | 16 21 | eqeltrrd | |- ( ( R e. Ring /\ N e. Fin /\ F e. P ) -> `' F e. P ) |
| 23 | fvco3 | |- ( ( S : P --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) /\ `' F e. P ) -> ( ( Y o. S ) ` `' F ) = ( Y ` ( S ` `' F ) ) ) |
|
| 24 | 13 22 23 | syl2anc | |- ( ( R e. Ring /\ N e. Fin /\ F e. P ) -> ( ( Y o. S ) ` `' F ) = ( Y ` ( S ` `' F ) ) ) |
| 25 | fvco3 | |- ( ( S : P --> ( Base ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) /\ F e. P ) -> ( ( Y o. S ) ` F ) = ( Y ` ( S ` F ) ) ) |
|
| 26 | 13 19 25 | syl2anc | |- ( ( R e. Ring /\ N e. Fin /\ F e. P ) -> ( ( Y o. S ) ` F ) = ( Y ` ( S ` F ) ) ) |
| 27 | 7 24 26 | 3eqtr4d | |- ( ( R e. Ring /\ N e. Fin /\ F e. P ) -> ( ( Y o. S ) ` `' F ) = ( ( Y o. S ) ` F ) ) |